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Abstract
This paper proposes and develops new linesearch methods with inexact gradient infor-
mation for finding stationary points of nonconvex continuously differentiable functions
on finite-dimensional spaces. Some abstract convergence results for a broad class of
linesearch methods are established. A general scheme for inexact reduced gradient
(IRG) methods is proposed, where the errors in the gradient approximation automati-
cally adapt with the magnitudes of the exact gradients. The sequences of iterations are
shown to obtain stationary accumulation points when different stepsize selections are
employed. Convergence results with constructive convergence rates for the developed
IRG methods are established under the Kurdyka–Łojasiewicz property. The obtained
results for the IRG methods are confirmed by encouraging numerical experiments,
which demonstrate advantages of automatically controlled errors in IRG methods
over other frequently used error selections.
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1 Introduction

Consider the unconstrained optimization problem formulated as follows:

minimize f (x) subject to x ∈ IRn (1.1)

with a continuously differentiable (C1-smooth) objective function f : IRn → IR.
One of the most natural and classical approaches to solve (1.1) is by using linesearch
methods; see, e.g., [8, 10, 24, 38, 40, 45]. Given a starting point x1 ∈ IRn , suchmethods
construct the iterative procedure

xk+1 := xk + tkdk for all k ∈ IN, (1.2)

where tk ≥ 0 is a stepsize at the kth iteration, and where the direction dk satisfies the
condition

〈
dk,∇ f (xk)

〉
< 0.

The classical choice for the direction is dk = −∇ f (xk) when the resulting algorithm
is known as the gradient descent method; see the aforementioned books and the refer-
ences therein. If f is twice continuously differentiable (C2-smooth) and the Hessian
matrix ∇2 f (xk) is positive-definite, then dk is chosen by solving the linear equation

−∇ f (xk) = ∇2 f (xk)dk,

and it is known as a Newton direction [10, 21, 24]. Additionally, more general choices
of descent directions widely used are the gradient related directions [10, Page 41],
directions satisfying an angle condition [1, Page 541], etc. Together with the descent
directions, stepsizes are usually chosen to ensure the decreasing property of the entire
sequence

{
f (xk)

}
or sometimes only its tail. Well-known stepsize selections are con-

stant stepsize, diminishing stepsize (not summable), stepsizes following Armijo rule,
and Wolfe conditions; see, e.g., [1, 8, 10, 24, 38, 40, 45].

The stationarity of accumulation points generated by linesearch methods with gra-
dient related directions and stepsizes following the Armijo rule is established in
[10, Proposition 1.2.1]. When the Lipschitz continuity of the gradient is additionally
assumed, the same type of convergence is achieved if either the stepsize is constant
and directions are gradient related, or the stepsize is diminishing and directions sat-
isfy more involved conditions [10, Proposition 1.2.3]. The global convergence of
some linesearch methods to an isolated stationary point relies on the Ostrowski con-
dition; see [42] and [21, Theorem 8.3.9]. If there is no guarantee on the isolation
of stationary points, algebraic geometry tools introduced by Łojasiewicz [36] and
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Kurdyka [33] are used for linesearch methods with directions satisfying the angle
conditions and the stepsize following the Wolfe conditions; see [1, Theorem 4.1].
While rates of convergence of general linesearch methods are not considered, some
specific methods achieve certain convergence rates for particular classes of functions.
For instance, the gradient descent method achieves a local linear rate of convergence if
the objective function is twice differentiable with Lipschitz continuous Hessian as in
[38, Theorem 1.2.4], and the (generalized) damped Newton method attains a superlin-
ear convergence rate of under the positive-definiteness of the (generalized)Hessian and
some additional assumptions; [27, Theorem 4.5]. Furthermore, a linear rate of conver-
gence for the gradient descent method is achieved under either the Polyak–Łojasiewicz
condition as in [43] and [26], or under the weak convexity of the objective function
as in [48].

Due to its simplicity, the gradient descent method is broadly used to solve various
optimization problems; see, e.g., [13, 17, 18, 39, 49]. However, errors in gradient
calculations may appear in many situations, which can be found in practical prob-
lems arising, e.g., in the design of space trajectories [2] and computer-aided design of
microwave devices [23]. Moreover, many nonsmooth optimization problems can be
transformed into its smoothed versions by using Moreau envelopes [47] and forward-
backward envelopes [50]. Nevertheless, gradients of smoothed functions cannot be
usually computed precisely, and therefore, various gradient methods with inexact gra-
dient information have been suggested.Wemention the followingmajor developments
in this vein:

• Devolder et al. [20] introduce the notion of inexact oracle and analyze behavior
of several first-order methods of smooth convex optimization employed such an
oracle. Nesterov [37] develops new methods of this type for nonsmooth convex
optimization in the framework of inexact oracle.

• Gilmore andKelley [23] propose an implicit filtering algorithm to deal with certain
box constrained optimization problems, where the objective function is a sum of
a C1-smooth function with Lipschitz continuous gradient and a noise function.

• Bertsekas shows in [10, pp. 44–45] that if the objective function is C1-smooth
with a Lipschitz continuous gradient and if the error of inexact gradient is either
small relative to the norm of the exact gradient, or proportional to the stepsize,
then convergence behavior of gradient methods is similar to the case where there
are no errors.

Recently, [22] proposed a frequency-domain analysis of inexact gradient descent
methods; [51] analyzed accelerated gradient methods with absolute and relative noise
in the gradient; [35] presented a zero-order mini-batch stochastic gradient descent
methods. All the convergence results for inexact gradient methods mentioned above
assume that the objective function is either C1-smoothwith a Lipschitz continuous gra-
dient, or convex. To the best of our knowledge, general methods of solving nonconvex
C1-smooth optimization problems with inexact information on non-Lipschitzian gra-
dients are not available in the literature. One of the reasons for this is that verifying
the descent property of the sequence of function values without the Lipschitz continu-
ity of ∇ f via the Armijo linesearch requires exact information on gradients. To deal
with inexactness, we need a descent direction that allows us to replace the Armijo
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linesearch procedure by another one not demanding exact gradients. In addition, a
practical inexact gradient method that uses constant stepsize for a general nonconvex
C1-smooth function with the Lipschitz gradient is also not established. Although an
inexact gradient method with constant stepsize is proposed in [10, pp. 44–45] by using
an error smaller than the norm of the exact gradient, the problem of how to control
this error while the exact gradient is unknown is still questionable.

Having in mind the above discussion, we introduce new inexact reduced gradient
(IRG) methods to find stationary points for a general class of nonconvex C1-smooth
functions. Although our proposed methods address smooth problems, some moti-
vations for them partly come from a certain nonsmooth algorithm and generalized
differential tools of variational analysis. Specifically, to find a Clarke stationary point
of a nonsmooth locally Lipschitzian function, the gradient sampling (GS) method,
introduced by Burke et al. [14] and modified by Kiwiel [30], approximates at each
iteration the ε-generalized gradient by the convex hull of nearby gradients. In the GS
method, the negative projection of the origin onto this convex hull is chosen as the
descent direction and the stepsizes are chosen from the backtracking linesearch as in
[30, Section 4.1]. Although the GSmethod works well for nonsmooth problems, using
them for smooth functions seems to be challenging due to, in particular, the necessity
to solve subproblems of finding projections onto convex hulls. However, replacing
the ε-generalized gradient by the Fréchet-type ε-subdifferential makes our methods
much simpler and suitable for smooth problems. Indeed, the latter construction for a
C1-smooth function at the point in question is just the closed ball centered at its gra-
dient with radius ε. Thus, the projection of the origin onto this ball has an explicit and
simple form. The descent direction chosen by this projection also allows us to replace
the exact gradient by its approximation and to use a linesearch procedure that does not
require exact gradients. Developing this idea, we design our inexact reduced gradient
methods with non-normalized directions together with some stepsize selections such
as backtracking stepsize, constant stepsize, and diminishing stepsize. To the best of
our knowledge, the IRG methods that we propose and develop in this paper are com-
pletely new even in the exact case. It should also be emphasized that the proposed IRG
methods are not special versions of the GS one since the latter needs exact gradients
at multiple points in each iteration, while the IRG methods need only one inexact
gradient. Moreover, the iterative sequence of the GS method is chosen randomly,
while IRG iterations are designed deterministically. Our main results include the
following:

• Designing a general framework for IRG methods and revealing their basic prop-
erties. The inexact criterion used in IRG methods is universal and appears in
various contexts of nonsmooth optimization as well as in its smooth derivative-free
counterpart.

• Finding stationary accumulation points of iterations in the IRG methods with
backtracking stepsizes as well as with either constant stepsizes, or diminishing
ones under an additional descent condition on the objective functions.

• Obtaining the global convergence of iterations in the IRG methods with con-
structive convergence rates depending on the exponent of the imposed Kurdyka–
Łojasiewicz (K L) property of the objective functions.
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These results are achieved by using our newly developed scheme for general line-
search methods described in the following way. To begin with, some conditions are
proposed to ensure the stationaryof accumulationpoints in general linesearchmethods.
If the KL property is additionally assumed, then the global convergence of the iterative
sequence to a stationary point is guaranteed. Moreover, the rates of convergence are
established if the stepsize is bounded away from zero.

From a practical viewpoint, our IRG methods automatically adjust the errors
required for finding approximate gradients, which will be shown to have numeri-
cal advantages over decreasing errors, e.g., εk = k−p as p ≥ 1, that are frequently
used in the existing methods [10, 20, 23]. To elaborate more on this issue, observe
that since the magnitude of the exact gradient is small near the stationary points and
is larger elsewhere, decreasing errors that do not take the information of the exact or
inexact gradients into consideration may encounter the following phenomena:

• Over approximation, which happens when the magnitude of the exact gradient is
large but the error is too small. In this case, the procedures offinding an approximate
gradient may execute longer than needed to obtain a good approximation of the
exact gradient.

• Under approximation, which happens when the magnitude of the exact gradient is
small but the error is too large, which may lead us to an approximate gradient that
is not good enough. As a consequence of using such an approximate gradient, the
next iterative element can be worse instead of being better than the current one.

In contrast to methods using decreasing errors, our IRG methods, by performing
a low-cost checking step in each iteration to determine whether the error for the
approximation procedure should decrease or stay the same in the next iteration, use
errors that automatically adapt with the magnitudes of the exact gradients to avoid the
aforementioned phenomena and exhibit a better performance. Note that the bounded
errors are not compared here for inexact gradient methods since they are even worse
than the decreasing errors in the sense that employing them may cause the divergence
in sequences of iterates, gradients, and function values as illustrated in [44, Section 4].

The rest of the paper is organized as follows. Section2 discusses basic notions
related to the methods. A unified convergence framework for general linesearch meth-
ods is developed in Sect. 3. In Sect. 4, we introduce a general form of IRGmethods and
investigate their principal properties. Our main results about the convergence behavior
of the IRG methods with different stepsize selections are given in Sect. 5 by adapting
the convergence framework of Section 3. The numerical experiments conducted in
Sect. 6 support the theoretical results obtained in Sect. 5 and show that the IRG meth-
ods with the new type of automatically controlled errors have a better performance in
comparison with the inexact proximal point method in the Least Absolute Deviations
Curve-Fitting problem taken from [11]. In Sect. 6, we also compare numerically the
performance of our IRG methods with those of the reduced gradient method and the
gradient decent method employing the exact gradient calculations for two well-known
benchmark functions in global optimization. The last Sect. 7 discusses some directions
of our future research.
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2 LinesearchMethods and Related Properties

First we recall some notions and notation frequently used in what follows. All our con-
siderations are given in the space IRn with the Euclidean norm ‖ · ‖ and scalar/inner
product 〈·, ·〉. We use IN := {1, 2, . . .}, IR+, and IR := IR ∪ {∞} to denote the collec-
tions of natural numbers, positive numbers, and the extended real line, respectively.

The symbol xk J→ x means that xk → x as k → ∞with k ∈ J ⊂ IN. For a C1-smooth
function f : IRn → IR, x̄ is a stationary point of f if ∇ f (x̄) = 0. The function f is
said to satisfy the L-descent condition with some L > 0 if

f (y) ≤ f (x) + 〈∇ f (x), y − x〉 + L

2
‖y − x‖2 for all x, y ∈ IRn . (2.1)

We see that L-descent condition (2.1) means that the graphs of the quadratic functions
fL,x (y) := f (x) + 〈∇ f (x), y − x〉 + L

2 ‖y − x‖2 lie above that of f for all x ∈ IRn .

This condition is equivalent to the convexity of
L

2
‖x‖2 − f (x) [52, Lemma 4], while

being a direct consequence of the L-Lipschitz continuity of∇ f , i.e., the Lipschitz con-
tinuity of∇ f with constant L; see, e.g., [10, Proposition A.24] and [24, LemmaA.11].
The converse implication holds when f is convex [6, 52] but fails otherwise. A major
class of real-valued functions satisfying the L-descent condition but not having the
Lipschitz continuous gradient is given by

f (x) := 1

2
〈Ax, x〉 + 〈b, x〉 + c − h(x),

where A is an n × n matrix, b ∈ IRn , c ∈ IR and h : IRn → IR is a smooth convex
function whose gradient is not Lipschitz continuous, e.g., h(x) := ‖Cx − d‖4, where
C is an m × n matrix and d ∈ IRm . Indeed, we can find some L > 0 such that the
matrix L I − A is positive-semidefinite, where I is the n ×n identity matrix. It follows
from the second-order characterization of convex functions that

L

2
‖x‖2 −

(
1

2
〈Ax, x〉 + 〈b, x〉 + c

)
= 1

2

〈
(L I − A)x, x

〉 − 〈b, x〉 − c is convex.

Combining this with the convexity of h, we get the convexity of
L

2
‖x‖2 − f (x),

which means that f satisfies the L-descent property (2.1).
Even when ∇ f is Lipschitz continuous with constant L > 0, f can satisfy the

L̃-descent condition with L̃ < L . For example, consider the univariate function f
together with its gradient ∇ f given by

f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3
4 x2 if |x | < 2

3 ,

− 3
2 x2 + 3x − 1 if 2

3 ≤ x ≤ 1,

− 3
2 x2 − 3x − 1 if − 1 ≤ x ≤ − 2

3 ,

|x | − x2
2 if |x | > 1
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Fig. 1 An illustration for f and f3/2,x

and ∇ f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3
2 x if |x | < 2

3 ,

−3x + 3 if 2
3 ≤ x ≤ 1,

−3x − 3 if − 1 ≤ x ≤ − 2
3 ,

1 − x if x > 1,

−1 − x if x < 1.

The latter representation implies that L = 3 is the smallest constant for the Lipschitz
continuity of ∇ f . Meanwhile, we see in Fig. 1 that f satisfies the L̃-descent property
with L̃ = 3/2.

Next we recall by following [10, Section 1.2] some basic stepsize selections for the
iterative procedure (1.2). The stepsize sequence {tk} satisfies the Armijo rule if there
exist a scalar β and a reduction factor γ ∈ (0, 1) such that for all k ∈ IN we have the
representation

tk = max
{
t
∣∣ f (xk + tdk) ≤ f (xk) + βt

〈∇ f (xk), dk 〉, t = 1, γ, γ 2, . . .
}
. (2.2)

This stepsize selection ensures the nonincreasing property of the entire sequence{
f (xk)

}
. However, Armijo stepsizes may be small and thus require a large number of

stepsize reducing steps in order to make just small changes of the iterative sequence.
To significantly simplify the iterative sequence design, it is possible to consider a

constant stepsize, i.e., tk := α for all k ∈ IN. For this rule, the nonincreasing property
of

{
f (xk)

}
is not ensured in general but holds under the L-descent condition (2.1)

whenever α is chosen to be sufficiently small with respect to 1/L , see, e.g., [10, 40].
However, even when the L-descent condition is satisfied for f , while an approximate
value of L is unknown, using constant stepsizes becomes inefficient. In such a case,
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it is possible to use the diminishing stepsize selection, i.e.,

tk ↓ 0 as k → ∞ and
∞∑

k=1

tk = ∞. (2.3)

Drawbacks of the latter selection are the eventual slow convergence due to its small
stepsizes and the absence of the descent property for the iterative sequence

{
f (xk)

}
.

Now, we formulate a general type of directions that plays a crucial role in our
subsequent analysis of various linesearch methods.

Definition 2.1 Let
{

xk
}
be a sequence in IRn . The direction sequence

{
dk

}
is called

gradient associated with
{

xk
}
if we have the implication

whenever dk J→ 0 for some infinite set J ⊂ IN, it holds that ∇ f (xk)
J→ 0.
(2.4)

It can be easily checked that if either

lim
k→∞

∥∥∥dk − ∇ f (xk)

∥∥∥ = 0, (2.5)

or there exists some constant c > 0 such that

∥∥∥∇ f (xk)

∥∥∥ ≤ c
∥∥∥dk

∥∥∥ for all sufficiently large k ∈ IN, (2.6)

then
{
dk

}
is gradient associated with

{
xk

}
. Many methods such as the gradient

descent, the generalized damped Newton method [27, 28], and the methods appeared
in [10, Proposition 1.2.3] satisfy (2.6), while (2.5) can be considered as a standard con-
dition for inexact gradient directions. It should be also mentioned that the notion of
gradient associated directions is different from the notion of gradient-related directions
proposed by Bertsekas in [10].

Finally in this section, we discuss two versions of the fundamental KL property
playing a crucial role in the results on global convergence and convergence rates
established in what follows. The first version, which is mainly used in the paper, is
due to Absil et al. [1, Theorem 3.4].

Definition 2.2 Let f : IRn → IR be a differentiable function. We say that f satisfies
the KL property at x̄ ∈ IRn if there exist a number η > 0, a neighborhoodU of x̄ , and a
nondecreasing function ψ : (0, η) → (0,∞) such that the function 1/ψ is integrable
over (0, η) and we have

‖∇ f (x)‖ ≥ ψ
(

f (x) − f (x̄)
)

(2.7)

for all x ∈ U with f (x̄) < f (x) < f (x̄) + η.
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Remark 2.3 By using rather standard arguments, we observe that for a smooth func-
tion f , the KL property from Definition 2.2 is weaker than the KL property of
f at x introduced by Attouch et al. in [5]. It has been realized that KL property
in the sense of Attouch et al., and hence, the one from Definition 2.2, is satisfied
in broad settings. In particular, it holds at every nonstationary point of f ; see [5,
Lemma 2.1 and Remark 3.2(b)]. Furthermore, it is proved at the original paper by
Łojasiewicz [36] that any analytic function f : IRn → IR satisfies the KL property
at every point x with ϕ(t) = Mt1−q for some q ∈ [0, 1). Typical smooth functions
satisfying this property are semialgebraic functions and also those from the more
general class of functions definable in o-minimal structures; see [12, 33]. For other
examples of functions satisfying the KL property, we refer the reader to [5, 34] and
the bibliographies therein.

Next we present the convergence result for linesearchmethods under the fulfillment
of the KL property, which is taken from [1, Theorem 3.4].

Proposition 2.4 Let f : IRn → IR be a C1-smooth function, and let the sequence of
iterations

{
xk

} ⊂ IRn satisfy the following conditions:

(H1) (primary descent condition). There exists σ > 0 such that for sufficiently large
k ∈ IN we have

f (xk) − f (xk+1) ≥ σ

∥∥∥∇ f (xk)

∥∥∥ ·
∥∥∥xk+1 − xk

∥∥∥ .

(H2) (complementary descent condition). For sufficiently large k ∈ IN, we have

[
f (xk+1) = f (xk)

] �⇒ [xk+1 = xk].

If x̄ is an accumulation point of
{

xk
}

and f satisfies the KL property at x̄ , then xk → x̄
as k → ∞.

Although the convergence of linesearch methods under the KL property is widely
exploited, the convergence rates of suchmethods under conditions (2.8) belowhave not
been established. The following result presents convergence rates of general linesearch
methods under these conditions. It should be noted that the proofs in [4, 41] for
the convergence rates of proximal-type methods under the KL property cannot be
generalized directly to Theorem 2.5. To the best of our knowledge, the results in
[26, 43] are the closest to this theorem. However, the known results consider only
the convergence of the exact gradient method for smooth functions with Lipschitz
gradients under the Polyak–Łojasiewicz (PL) property [43]. Since the exact gradient
method is a special case of the linesearchmethod,while thePLproperty is a special case
of the KL property, we conclude that Theorem 2.5 has a broader range of applications
than the results in [26, 43]. The proof of this result can be conducted similarly to the
corresponding one from [3, Theorem 1] and thus is omitted.
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Theorem 2.5 Let the sequences
{

xk
} ⊂ IRn, {tk} ⊂ IR+ and the numbers β > 0, c >

0 be such that xk+1 �= xk for all k ∈ IN, and that we have

f (xk) − f (xk+1) ≥ β

tk

∥∥∥xk+1 − xk
∥∥∥
2

and
∥∥∥∇ f (xk)

∥∥∥ ≤ c

tk

∥∥∥xk+1 − xk
∥∥∥ (2.8)

for sufficiently large k ∈ IN. Suppose that the sequence {tk} is bounded away from 0,
that x̄ is an accumulation point of

{
xk

}
, and that f satisfies the KL property at x̄ with

ψ(t) = Mtq for some M > 0 and q ∈ (0, 1). The following convergence rates are
guaranteed:

(i) If q ∈ (0, 1/2], then the sequence
{

xk
}

converges linearly to x̄ .
(ii) If q ∈ (1/2, 1), then there exists a positive constant 
 such that

∥∥∥xk − x̄
∥∥∥ ≤ 
k− 1−q

2q−1 for sufficiently large k ∈ IN.

3 A Unified Convergence Framework for Some LinesearchMethods

In this section, we establish properties for a general class of linesearchmethods of type
(1.2), which provide major tools for convergence analysis of IRG methods in Sect. 5.
One of the most important results desired for linesearch methods is as follows:

every accumulation point of {xk} is a stationary point of f . (3.1)

By the continuity of the gradient mapping, the desired property (3.1) automatically
holds if for each accumulation point x̄ of

{
xk

}
we can find an infinite set J ⊂ IN such

that xk J→ x̄ and ∇ f (xk)
J→ 0. If the exact information on the gradient is unknown,

while
{
dk

}
is gradient associated with

{
xk

}
, i.e., (2.4) is satisfied, then property (3.1)

is satisfied when

xk J→ x̄ and dk J→ 0 for some infinite set J ⊂ IN. (3.2)

We are going to show that (3.2) holds whenever 0 is an accumulation point of
{
dk

}

and

∞∑

k=1

∥∥∥xk+1 − xk
∥∥∥ ·

∥∥∥dk
∥∥∥ < ∞. (3.3)

The following new result gives us a unified convergence analysis for many linesearch
methods.

Lemma 3.1 Let
{

xk
}

and
{
dk

}
be sequences satisfying (3.3). If x̄ is an accumulation

point of
{

xk
}

and if 0 is an accumulation point of
{
dk

}
, then there exists an infinite
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set J ⊂ IN such that

xk J→ x̄ and dk J→ 0. (3.4)

Proof If xk → x̄ as k → ∞, the conclusion obviously holds, so suppose that xk
� x̄ .

It suffices to show that for any δ > 0 sufficiently small and any N ∈ IN there is a
number kN ≥ N such that

‖xkN − x̄‖ < δ and ‖dkN ‖ < δ.

Fix such δ > 0 and N ∈ IN. Since δ is sufficiently small and xk
� x̄ , suppose that

the set

A1 := {
k ≥ N

∣∣ ‖xk − x̄‖ ≥ δ
}

is infinite.

As x̄ is an accumulation point of
{

xk
}
and 0 is an accumulation point of

{
dk

}
, we get

that

A2 : = {
k ≥ N

∣∣ ‖xk − x̄‖ < δ
}

is infinite,

A3 : = {
k ≥ N

∣∣ ‖xk − x̄‖ < δ/2
}

is infinite,

A4 : = {
k ≥ N

∣∣ ‖dk‖ < δ
}

is infinite.

It suffices to verify that A2 ∩ A4 �= ∅. Suppose on the contrary that A2 ∩ A4 = ∅, i.e.,

‖dk‖ ≥ δ for all k ∈ A2.

By (3.3), we have the estimates

∞ >

∞∑

k=1

∥∥∥xk+1 − xk
∥∥∥ ·

∥∥∥dk
∥∥∥ ≥

∑

k∈A2

∥∥∥xk+1 − xk
∥∥∥ ·

∥∥∥dk
∥∥∥

≥ δ
∑

k∈A2

∥∥∥xk+1 − xk
∥∥∥ ,

which ensure the series convergence

∑

k∈A2

∥∥∥xk+1 − xk
∥∥∥ < ∞. (3.5)

Taking any number K ∈ A3, we also have K ∈ A2. Since A1 is infinite and A1, A2
form a partition of the set {N , N + 1, . . .} including K , there exists a number K̂ ∈ A1
with K̂ > K such that K , K + 1, . . . , K̂ − 1 ∈ A2. Then, we have the estimates

∥∥∥x K̂ − x K
∥∥∥ ≥

∥∥∥x K̂ − x̄
∥∥∥ −

∥∥∥x K − x̄
∥∥∥ ≥ δ − δ/2 = δ/2.
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Using the triangle inequality and (3.5) gives us

δ/2 ≤
∥∥∥x K̂ − x K

∥∥∥ ≤
K̂−1∑

i=K

∥∥∥xi+1 − xi
∥∥∥ ≤

∑

i≥K , i∈A2

∥∥∥xi+1 − xi
∥∥∥

K→∞−−−−→
K∈A3

0,

which brings us to a contradiction that completes the proof of the lemma. ��
Remark 3.2 Let us now present some observations in Lemma 3.1.

(i) Lemma 3.1 develops a unified convergence analysis framework for linesearch
methods (1.2) under a general condition on the directions dk without specifying
a class of functions f and stepsizes tk . Note to this end that Bertsekas develops
in [10, Section 1.2] some general schemes for linesearch methods (1.2) with
specific classes of functions, directions, and stepsizes, while Absil et al. [1,
Theorem 4.1] present convergence properties of linesearch methods for smooth
functions under the angle and Wolfe conditions for directions. Devolder et al.
[20] develop schemes only for convex functions. To the best of our knowledge,
the framework presented in Lemma 3.1 is more general than the other schemes
mentioned above.

(ii) Since Lemma 3.1 does not require any assumption on f , its usage is not limited
to linesearch methods for smooth functions. Convergence analysis of differ-
ent nonsmooth optimization methods can be found in [15, 30–32, 41] and the
references therein.

(iii) If 0 is not an accumulation point of {dk}, then (3.3) implies that {xk} is conver-
gent. Indeed, the negation of the statement that 0 is an accumulation point of
{dk} yields the existence of τ > 0 and K ∈ IN such that

‖dk‖ ≥ τ for all k ≥ K .

It follows from (3.3) that

τ

∞∑

k=K

∥∥∥xk+1 − xk
∥∥∥ ≤

∞∑

k=K

∥∥∥xk+1 − xk
∥∥∥ ·

∥∥∥dk
∥∥∥ < ∞,

which implies that {xk} is a Cauchy sequence, and thus, it converges.

Next we recall the classical results from [21, 42] that describe important properties
of the set of accumulation points generated by a sequence satisfying the Ostrowski
condition; see (3.6).

Lemma 3.3 Let
{

xk
}

be a sequence satisfying the Ostrowski condition

lim
k→∞ ‖xk+1 − xk‖ = 0. (3.6)
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Then, the following assertions hold:

(i) If
{

xk
}

is bounded, then the set of accumulation points of
{

xk
}

is nonempty,
compact, and connected in IRn.

(ii) If
{

xk
}

has an isolated accumulation point, then this sequence converges to it.

Now, we are ready to establish the main result of this section revealing major
convergence properties of a general class of linesearch methods.

Theorem 3.4 Let
{

xk
}

be a sequence generated by a linesearch method (1.2) such
that:

(a)
{
dk

}
is gradient associated with

{
xk

}
;

(b) 0 is an accumulation point of
{
dk

} ;
(c)

∞∑

k=1

tk‖dk‖2 < ∞.

Then, every accumulation point of
{

xk
}

is a stationary point of f . Moreover, if {tk} is
bounded from above, then the following assertions hold:

(i) If
{

xk
}

is bounded, then the set of accumulation points of
{

xk
}

is nonempty,
compact, and connected.

(ii) If
{

xk
}

has an isolated accumulation point, then this sequence converges to it.

Proof Let x̄ be an accumulation point of
{

xk
}
. Note that (c) is equivalent to (3.3)

under the linesearch relationship xk+1 = xk + tkdk in (1.2). Applying Lemma 3.1
with taking into account (b) and (c), we can find an infinite set J ⊂ IN such that

xk J→ x̄ and dk J→ 0. Then, (a) implies that ∇ f (xk)
J→ 0. Employing the continuity

of ∇ f , we have

∇ f (x̄) = lim
k

J→∞
∇ f (xk) = 0,

which tells us that x̄ is a stationary point of f . Suppose now that {tk} is bounded from
above by some τ > 0. Using (c), we immediately get

∞∑

k=1

‖xk+1 − xk‖2 =
∞∑

k=1

t2k ‖dk‖2 ≤ τ

∞∑

k=1

tk‖dk‖2 < ∞.

This leads us to
∥∥xk+1 − xk

∥∥ → 0 and verifies assertions (i) and (ii) by applying
Lemma 3.3. ��

Theorem 3.4 also allows us to ensure the stationarity of accumulation points gen-
erated by linesearch methods (1.2) applied to functions satisfying the L-descent
condition (2.1), where the stepsize is either constant or diminishing, and where
the direction is gradient associated while satisfying the following sufficient descent
condition

〈∇ f (xk), dk〉 ≤ −κ‖dk‖2 for all k ∈ IN (3.7)

123



Journal of Optimization Theory and Applications

with some constant κ > 0. Note that condition (3.7) is different from the gradient asso-

ciated condition from Definition 2.1, since from (3.7) we only have that ∇ f (xk)
J→ 0

yields dk J→ 0 but the reverse implication may not hold. In addition to the gradient
descent and generalizedNewtonmethods discussed above, there exist many other line-
search methods using direction (3.7), e.g., the boosted difference of convex functions
algorithm as in [3, Proposition 4]), the inexact Levenberg–Marquardt method as in [19,
Algorithm 3.1]), and the GS method for nonsmooth functions with non-normalized
direction given in [30, Section 4.1].

We have the following effective consequence of Theorem 3.4.

Corollary 3.5 Let
{

xk
}

be a sequence generated by a linesearch method (1.2). Suppose
that inf f (xk) > −∞, and that we have the conditions:

(a) f satisfies the L-descent condition (2.1) for some L > 0;
(b) the sequence

{
dk

}
is gradient associated with

{
xk

}
and satisfies (3.7) for some

κ > 0;
(c) the sequence {tk} is not summable, i.e.,

∞∑

k=1

tk = ∞, (3.8)

and there are numbers δ > 0 and N ∈ IN such that

tk ≤ 2κ − δ

L
for all k ≥ N . (3.9)

Then, every accumulation point of
{

xk
}

is stationary for f , and the assertions (i),
(ii) in Theorem 3.4 hold. Moreover, if {tk} is bounded away from 0, then ∇ f (xk) → 0
as k → ∞.

Proof It follows from (3.9) in condition (c) that

κ − Ltk
2

≥ δ

2
for all k ≥ N .

Since f satisfies L-descent condition (2.1), we deduce from (3.7) and the latter
inequality that

f (xk+1) ≤ f (xk) + tk
〈
∇ f (xk), dk

〉
+ Lt2k

2

∥∥∥dk
∥∥∥
2

≤ f (xk) − tkκ
∥∥∥dk

∥∥∥
2 + Lt2k

2

∥∥∥dk
∥∥∥
2

= f (xk) − tk
∥∥∥dk

∥∥∥
2 (

κ − Ltk
2

)

≤ f (xk) − δ

2
tk

∥∥∥dk
∥∥∥
2

for all k ≥ N . (3.10)
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Then, summing up the relationships
δ

2
tk

∥∥dk
∥∥2 ≤ f (xk)− f (xk+1) over k = N , N +

1, . . . and using the assumption inf f (xk) > −∞ give us

∞∑

k=N

tk
∥∥∥dk

∥∥∥
2

< ∞. (3.11)

Now, we show that 0 is an accumulation point of
{
dk

}
. Suppose on the contrary that

there exist a positive number u and a natural number K ≥ N such that

∥∥∥dk
∥∥∥ ≥ u for all k ≥ K .

Using this together with (3.11) implies that
∑∞

k=K tk < ∞, which contradicts (3.8).
Therefore, 0 is an accumulation point of

{
dk

}
. Combining the latter with (b), (3.11),

and (3.9) allows us to confirm that all the assumptions of Theorem 3.4 are satisfied.
Thus, every accumulation point of {xk} is a stationary point of f , and both assertions
in (i) and (ii) hold.

If finally {tk} is bounded away from 0, it follows from (3.11) that dk → 0 as
k → ∞. Since the sequence

{
dk

}
is gradient associated with

{
xk

}
by (b), we get

∇ f (xk) → 0. ��
By employing the iterative procedure xk+1 = xk + tkdk, the conditions in (2.8)

can be rewritten as the following estimates:

f (xk) − f (xk+1) ≥ βtk
∥∥∥dk

∥∥∥
2

and
∥∥∥∇ f (xk)

∥∥∥ ≤ c
∥∥∥dk

∥∥∥ .

4 General Scheme for Inexact Reduced Gradient Methods

In this section,we design a general framework for our novel IRGmethods and establish
their basic properties prior to constructing particular methods of this type with various
stepsize selections. Now,we are ready to formulate our general algorithmic framework
(the Master Algorithm) for IRG methods without considering yet particular stepsize
selections.

Algorithm 1 (general framework for IRG methods)

Step 0 (initialization) Select an initial point x1 ∈ IRn , initial radii ε1, r1 > 0, radius
reduction factors μ, θ ∈ (0, 1).

Step 1 (inexact gradient and stopping criterion) Choose gk such that

∥∥∥gk − ∇ f (xk)

∥∥∥ ≤ εk . (4.1)
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Step 2 (radius update) If
∥∥gk

∥∥ ≤ rk + εk , then set rk+1 := μrk, εk+1 := θεk ,
dk := 0, and go to Step 3. Otherwise, set rk+1 := rk , εk+1 := εk , and

dk := −
∥∥gk

∥∥ − εk∥∥gk
∥∥ gk . (4.2)

Step 3 (stepsize) Choose tk > 0 by a specific rule.

Step 4 (iteration update) Set xk+1 := xk + tkdk .

Step 5 Increase k by 1 and go back to Step 1.

Let us make some comments on the constructions of Algorithm 1. The first remark
concerns the novelty in the choice of errors and directions.

Remark 4.1 We have the following observations on the error criterion used in
Algorithm 1:

(i) The inexact criterion (4.1) is universal and appears in many contexts even when
only information on function values is available as in derivative-free optimiza-
tion [16]. In addition, as shown in [20, Section 2.2], condition (4.1) is also
satisfied if f is convex, smooth, and equipped with a first-order oracle, which
covers various well-known models in nonsmooth optimization, e.g., Nesterov’s
smoothing techniques, Moreau–Yosida regularization, augmented Lagrangians
as in [20, Section 3] and [29, Example 1].

(ii) From (4.1), the radius εk can be considered as an automatically controlled error
for the calculation of ∇ f (xk), which does not need to decrease after each iter-
ation. This is different than the choice εk = ck−p for p ≥ 1, c > 0 frequently
used in the well-knownmethods [10, 20, 23].Moreover, Steps 1 and 2 also show
that

∥∥∇ f (xk)
∥∥ ≤ rk + 2εk when εk is reduced. Therefore, we can conclude

intuitively that
∥∥∇ f (xk)

∥∥ is decreasing when εk is decreasing.
(iii) In the exact case when gk = ∇ f (xk) for all k ∈ IN, we label our methods as

the reduced gradient (RG) ones, which are different from the standard gradient
descent method. Indeed, it follows from Step 2 that dk is either 0 or is given by

dk = −
(‖∇ f (xk)‖ − εk

‖∇ f (xk)‖
)

∇ f (xk). (4.3)

Therefore, the vector dk in (4.3) has the same direction as −∇ f (xk), but its
length is

∥∥∇ f (xk)
∥∥ reduced by εk for each k ∈ IN.

Further we discuss and illustrate behavior of Algorithm 1 at the major steps of
iterations.

Remark 4.2 Notice first that:

(i) If dk �= 0, it follows from (4.2) and the definition of projections that dk =
−Proj(0, B(gk, εk)).
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Fig. 2 An illustration for IRG methods

(ii) An illustration for Algorithm 1 can be seen in Fig. 2.
Let g1 be an approximate gradient of ∇ f (x1) at the 1st iteration. Then, Fig. 2
shows that the two balls B(g1, ε1) and B(0, r1) do not intersect. This means by
Step 2 that r2 = r1, ε2 = ε1, and d1 = −Proj(0, B(g1, ε1)). Then, we have a
new point x2 = x1 + t1d1 after choosing the stepsize t1 > 0 as in Step 3 and
Step 4.
At the 2nd iteration, it can be seen in Fig. 2 that the two balls B(g2, ε2) and
B(0, r2) intersect each other. Thus by Step 2 of Algorithm 1, the radii r2, ε2 are
reduced to r3 = μr2 and ε3 = θε2, while the direction d2 is zero. The latter
means that the iterative point x2 stays the same, i.e., x3 = x2 from Step 4.
At the 3rd iteration, although ∇ f (x3) = ∇ f (x2), we still need to recalculate
an approximate gradient g3 with a new error ε3. In this iteration, the two balls
B(g3, ε3) and B(0, r3) do not intersect, and hence, the procedure is similar to
that at the first iteration.

(iii) For each k ∈ IN, we have from Step 2 and Step 3 the equivalences

xk+1 = xk ⇐⇒ dk = 0 ⇐⇒ rk+1 = μrk ⇐⇒ εk+1 = θεk ⇐⇒
∥∥∥gk

∥∥∥ ≤ rk + εk .

(4.4)

The next proposition verifies the decent property of Algorithm 1.

Proposition 4.3 In Algorithm 1,
{
dk

}
satisfies the sufficient descent condition with

constant 1, i.e.,

〈
∇ f (xk), dk

〉
≤ −

∥∥∥dk
∥∥∥
2

for all k ∈ IN. (4.5)
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Proof Note that (4.5) automatically holds if dk = 0. Supposing that dk �= 0 and using
the construction of dk in Step 2, we have the expression

−dk = Proj
(
0, B(gk, εk)

)
.

It follows from (4.1) that
∥∥gk − ∇ f (xk)

∥∥ ≤ εk , which means that ∇ f (xk) ∈
B(gk, εk). Invoking the projection description for convex sets yields

〈
0 + dk,∇ f (xk) + dk

〉
≤ 0,

which is in turn equivalent to

〈
∇ f (xk), dk

〉
≤ −

∥∥∥dk
∥∥∥
2

and thus verifies the claim in (4.5). ��
Now, we introduce the notion of null iterations and establish some properties of

such iterations related to the IRG methods.

Definition 4.4 The kth iteration of Algorithm 1 is called a null iteration if xk+1 = xk .
The set of all null iterations is denoted by

N := {
k ∈ IN

∣∣ xk+1 = xk}.

The next proposition collects important properties of null iterations.

Proposition 4.5 Let
{

xk
}
,
{
gk

}
,
{
dk

}
, {εk}, and {rk} be sequences generated by

Algorithm 1. The following assertions hold:

(i) k ∈ N if and only if either one of the equivalent conditions in (4.4) holds.
(ii) εk ↓ 0 if and only if rk ↓ 0, which is equivalent to the set N being infinite.
(iii) If N is finite, then we have

∥∥∥gk
∥∥∥ > rN + εN and

∥∥∥dk
∥∥∥ > rN

for all k ≥ N, where N := maxN + 1.
(iv) If IN \ N is finite, then ∇ f (x K ) = 0 and

{
xk

}
k≥K is a constant sequence,

where we denote K := max{IN\N }+1. Otherwise, x̄ is an accumulation point
of

{
xk

}
if and only if it is an accumulation point of

{
xk

}
k∈IN\N , and therefore

xk → x̄ if and only if xk IN\N−→ x̄ .

Proof Assertions (i) and (ii) follow directly fromDefinition 4.4. To verify (iii), observe
that for any natural number k ≥ N , the kth iteration is not a null one and then deduce
from (i) that

εk+1 = εk = εN , rk+1 = rk = rN , and
∥∥∥gk

∥∥∥ > rk + εk = rN + εN .
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Together with Step 2 in Algorithm 1, this ensures that

∥∥∥dk
∥∥∥ =

∥∥∥gk
∥∥∥ − εk > rk = rN .

which readily justifies assertion (i).
The proof of (iv) is a bit more involved. Supposing that the set IN \N is finite, we

have that k ∈ N for all k ≥ K . This means by (i) that

xk+1 = xk, εk+1 = θεk, rk+1 = μrk, and
∥∥∥gk

∥∥∥ ≤ rk + εk whenever k ≥ K .

This tells us that xk = x K for all k ≥ K , and that εk ↓ 0, rk ↓ 0, and gk → 0 as
k → ∞. Taking the limit as k → ∞ in

∥∥gk − ∇ f (xk)
∥∥ ≤ εk gives us ∇ f (xk) → 0,

which yields ∇ f (x K ) = 0.
Supposing otherwise that the set IN \ N is infinite, we obviously get that every

accumulation point of
{

xk
}

k∈IN\N is an accumulation point of
{

xk
}
. Conversely,

taking any accumulation point x̄ of
{

xk
}
, it suffices to show that

for any δ > 0, N ∈ IN there exists kN ∈ IN \ N , kN ≥ N with
∥∥∥xkN − x̄

∥∥∥ < δ.

To verify this, fixing δ > 0 and N ∈ IN and remembering that x̄ is an accumulation
point of

{
xk

}
, we find K ≥ N such that

∥∥x K − x̄
∥∥ < δ. If K ∈ IN \ N , choose

kN := K . Otherwise, using that IN \ N is infinite allows us to find K̂ ∈ IN \ N for
which K , K + 1, . . . , K̂ − 1 ∈ N . This ensures that

x K̂ = x K̂−1 = . . . = x K+1 = x K ,

and therefore, with kN := K̂ , we get that
∥∥xkN − x̄

∥∥ < δ. Since δ was chosen
arbitrarily, this clearly shows that x̄ is an accumulation point of

{
xk

}
k∈IN\N and thus

completes the proof. ��
The last proposition here establishes relationships between convergence properties

of the sequences
{
gk

}
and

{
dk

}
in Algorithm 1.

Proposition 4.6 Let
{
gk

}
,
{
dk

}
, {εk}, and {rk} be sequences generated by Algo-

rithm 1. Then, for any k ∈ IN we have the estimates

∥∥∥dk
∥∥∥ ≤

∥∥∥gk
∥∥∥ ≤

∥∥∥dk
∥∥∥ + εk + rk . (4.6)

Consequently, the following assertions hold:

(i) εk ↓ 0 if and only if there is an infinite set J ⊂ IN such that gk J→ 0.
(ii) For any infinite set J ⊂ IN, we have the equivalence

gk J→ 0 ⇐⇒ dk J→ 0.
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Proof Fix any k ∈ IN. If k ∈ N , then we get by Proposition 4.5(i) that dk = 0 and∥∥gk
∥∥ ≤ εk + rk . Otherwise, Step 2 in Algorithm 1 yields

∥∥dk
∥∥ = ∥∥gk

∥∥ − εk ≤ ∥∥gk
∥∥.

In both cases, (4.6) holds.
To deduce (i) from (4.6), suppose that εk ↓ 0 as k → ∞. By Proposition 4.5(ii) we

have that rk ↓ 0 and the set N is infinite. Then, for any δ > 0 and N ∈ IN there is
k ≥ N with k ∈ N such that

∥∥∥gk
∥∥∥ ≤ rk + εk < δ,

where the first inequality follows from (4.4). Thus, we can construct an infinite set

J ⊂ IN such that gk J−→ 0. If conversely the sequence {εk} does not converge to 0,
then the setN is finite by Proposition 4.5(ii). Using Proposition 4.5(iii) confirms that{
gk

}
is bounded away from 0, which tells us that such an index set J does not exist.

To verify now assertion (ii), observe that assuming gk J→ 0 implies by the first

inequality in (4.6) that dk J→ 0. Conversely, suppose that dk J→ 0 and deduce from
Proposition 4.5(i) that the set N is infinite. Then, it follows from Proposition 4.5(ii)
that εk ↓ 0 and rk ↓ 0 as k → ∞. Using the second inequality in (4.6), we arrive at

gk J→ 0 and thus complete the proof of the proposition. ��
Finally in this section, we deduce from the obtained results the following desired

property of the direction sequence
{
dk

}
in Algorithm 1.

Corollary 4.7 The sequence
{
dk

}
in Algorithm 1 is gradient associated with

{
xk

}
.

Proof It follows from Proposition 4.6 that the convergence dk J→ 0 yields gk J→ 0

and εk ↓ 0. Thus, we get ∇ f (xk)
J→ 0 by taking into account

∥∥gk − ∇ f (xk)
∥∥ ≤ εk

from (4.1). This shows therefore that the sequence
{
dk

}
is gradient associated with{

xk
}
. ��

5 Inexact Reduced Gradient Methods with Stepsize Selections

In this section,we develop novel IRGmethodswith the following selections of stepsize
rules: backtracking stepsize, constant stepsize, and diminishing stepsize. Address first
an IRG method with the backtracking linesearch. Choose a linesearch scalar β ∈
(0, 1), a reduction factor γ ∈ (0, 1), and an artificial stepsize of null iterations τ ∈
(0, 1). Consider the Master Algorithm 1 with the stepsize sequence {tk} in Step 3
calculated as follows. If dk = 0, then put tk := τ . Otherwise, we set

tk := max
{
t
∣∣ f (xk + tdk) ≤ f (xk) − βt

∥∥dk
∥∥2, t = 1, γ, γ 2, . . .

}
. (5.1)

The next proposition shows that the stepsize sequence {tk} is well defined.
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Proposition 5.1 If dk �= 0, then there exists a positive number t̄ such that

f (xk + tdk) ≤ f (xk) − βt
∥∥dk

∥∥2 for all t ∈ [0, t̄],

which ensures the existence of tk in (5.1).

Proof Suppose that dk �= 0 and get by Proposition 4.3 that
〈∇ f (xk), dk

〉 ≤ − ∥∥dk
∥∥2.

By the differentiability of f at xk , for each t > 0 sufficiently small we have

f (xk + tdk) − f (xk) = t
〈
∇ f (xk), dk

〉
+ o(t) ≤ −t

∥∥∥dk
∥∥∥
2 + o(t)

= −βt
∥∥∥dk

∥∥∥
2 + t

(
(β − 1)

∥∥∥dk
∥∥∥
2 + o(t)

t

)
.

Since o(t)/t → 0 as t ↓ 0 and since (β − 1)
∥∥dk

∥∥2 < 0, there exists t̄ > 0 such that

f (xk + tdk) ≤ f (xk) − βt
∥∥∥dk

∥∥∥
2

for all t ∈ (0, t̄].

Therefore, the selection of tk in (5.1) is well defined. ��
Now, we are ready to establish a major result about the stationarity of accumulation

points of the iterative sequence generated by Algorithm 1 with the backtracking line
search.

Theorem 5.2 Let
{

xk
}

be the sequence of iterations generated by Algorithm 1 with
the sequence of stepsizes {tk} being chosen via the backtracking linesearch as in (5.1).
Assume in addition to the inexact gradient condition (4.1) that

∥∥gk − ∇ f (xk)
∥∥ ≤ ρk

with ρk ↓ 0 as k → ∞. Suppose furthermore that inf f (xk) > −∞. Then, the
following assertions hold:

(i) εk ↓ 0 and rk ↓ 0 as k → ∞.
(ii) Every accumulation point of

{
xk

}
is a stationary point of f .

(iii) If the sequence
{

xk
}

is bounded, then the set of accumulation points of
{

xk
}

is
nonempty, compact, and connected.

(iv) If
{

xk
}

has an isolated accumulation point, then the entire sequence
{

xk
}

converges to this point.

Proof From the choice of {tk} and Step 4 in Algorithm 1, for every k ∈ IN we have

βtk
∥∥∥dk

∥∥∥
2 ≤ f (xk) − f (xk+1). (5.2)

Since inf f (xk) > −∞, summing up on both sides of (5.2) over k = 1, 2, . . . and
using the relation xk+1 = xk + tkdk , we get that

∞∑

k=1

tk
∥∥∥dk

∥∥∥
2

< ∞ and
∞∑

k=1

∥∥∥xk+1 − xk
∥∥∥ ·

∥∥∥dk
∥∥∥ < ∞. (5.3)
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To verify assertion (i), recall by Proposition 4.5 (ii) that the convergence εk ↓ 0 is
equivalent to rk ↓ 0 and to the set of null iterations N being infinite. Assume on the
contrary that N is finite. By Proposition 4.5(iii) with N = maxN + 1, we have

∥∥∥gk
∥∥∥ > rN + εN and

∥∥∥dk
∥∥∥ > rN for all k ≥ N . (5.4)

Then, (5.3) gives us
∑∞

k=1 tk < ∞ and thus tk ↓ 0 as k → ∞. Choosing a larger
number N if necessary, we get that tk < 1 for all k ≥ N . For such k, it follows from
the exit condition of the algorithm that

−γ −1βtk
∥∥∥dk

∥∥∥
2

< f (xk + γ −1tkdk) − f (xk). (5.5)

By the classical mean value theorem, there exists some x̃ k ∈ [xk, xk + γ −1tkdk] such
that

f (xk + γ −1tkdk) − f (xk) = γ −1tk
〈
dk,∇ f (x̃ k)

〉
.

The latter equality together with (5.5) tells us that

〈
−dk,∇ f (x̃ k)

〉
≤ β

∥∥∥dk
∥∥∥
2

for all k ≥ N . (5.6)

Using (5.3) and (5.4), we have
∑∞

k=1

∥∥xk+1 − xk
∥∥ < ∞, and thus,

{
xk

}
converges to

some x̄ ∈ IRn . The continuity of∇ f ensures that∇ f (xk) → ∇ f (x̄). Then, employing∥∥gk − ∇ f (xk)
∥∥ ≤ ρk → 0 yields gk → ∇ f (x̄) as k → ∞. It follows from Step 2

that

−dk =
∥∥gk

∥∥ − εk∥∥gk
∥∥ gk =

∥∥gk
∥∥ − εN∥∥gk

∥∥ gk for all k ≥ N .

Letting k → ∞ leads us to the equalities

−dk → ḡ := ‖∇ f (x̄)‖ − εN

‖∇ f (x̄)‖ ∇ f (x̄) = Proj
(
0, B(∇ f (x̄), εN )

)
. (5.7)

Using tk ↓ 0, we get that x̃ k → x̄ , and thus∇ f (x̃ k) → ∇ f (x̄) as k → ∞. Combining
the latter with (5.6), (5.7), and the projection characterization verifies the estimates

‖ḡ‖2 ≤ 〈ḡ,∇ f (x̄)〉 ≤ β ‖ḡ‖2 . (5.8)

This tells us that ḡ = 0, which contradicts the condition ‖ḡ‖ ≥ rN by (5.4). Therefore,
we arrive at εk ↓ 0 and rk ↓ 0 as k → ∞, which completes the proof of assertion (i).

To justify assertions (ii)–(iv), recall fromCorollary 4.7 that
{
dk

}
is gradient associ-

ated with
{

xk
}
. Since εk ↓ 0,we deduce fromProposition 4.6 that 0 is an accumulation

123



Journal of Optimization Theory and Applications

point of
{
dk

}
. Combining these facts with (5.3) and tk ≤ 1 whenever k ∈ IN ensures

that all the assumptions of Theorem 3.4 are satisfied. Therefore, we verify assertions
(ii)–(iv) and finish the proof of the theorem. ��

Next we consider problem (1.1) with the objective function f satisfying the L-
descent condition for some L > 0. The following result establishes convergence
properties of IRG method, which uses either diminishing or constant stepsizes.

Theorem 5.3 Let
{

xk
}

be the sequence generated by Algorithm 1, where

(a) f satisfies the L-descent condition;
(b) either {tk} is diminishing, i.e.,

tk ↓ 0 as k → ∞ and
∞∑

k=1

tk = ∞, (5.9)

or there exist δ, δ′ > 0 such that δ′ ≤ 2 − δ

L
and

tk ∈
[
δ′, 2 − δ

L

]
for all k ∈ IN. (5.10)

Assume that inf f (xk) > −∞. Then, all the conclusions of Theorem 5.2 hold.
Moreover, if {tk} is chosen as (5.10), then ∇ f (xk) → 0 as k → ∞.

Proof We know from Remark 4.7 that the direction sequence
{
dk

}
is gradient associ-

ated with
{

xk
}
. Furthermore, Proposition 4.3 tells us that

{
dk

}
satisfies the sufficient

descent condition (3.7) with the constant κ = 1. Note that if {tk} is chosen as either
(5.9) or (5.10), then we always get that

∞∑

k=1

tk = ∞ and tk ≤ 2 − δ

L
for sufficiently large k ∈ IN.

Combining these facts with the imposed L-descent condition on f yields the fulfill-
ment of assumptions (a), (b), (c) in Corollary 3.5. Therefore, conclusions (ii)–(iv) of
Theorem 5.2 hold. The proof of Corollary 3.5 also ensures that 0 is an accumulation
point of

{
dk

}
. Thus, it follows from Proposition 4.6 that εk ↓ 0. Using Proposi-

tion 4.5(ii), we have rk ↓ 0, which verifies conclusion (i) of Theorem 5.2. If {tk} is
chosen as (5.10), its boundedness away from 0 is guaranteed, and so Corollary 3.5
yields ∇ f (xk) → 0 as k → ∞ and thus completes the proof of the theorem. ��

The final part of our convergence analysis of the proposed IRGmethods applies the
KL property to establishing the global convergence of the entire sequence of iterations
to a stationary point with deriving convergence rates. We start with the following
simple albeit useful lemma.
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Lemma 5.4 Let
{

xk
}

be the sequence generated by Algorithm 1 with θ < μ. Assume
that εk ↓ 0 and rk ↓ 0 as k → ∞. Then, there exists some N ∈ IN such that

∥∥∥∇ f (xk)

∥∥∥ ≤ 3
∥∥∥dk

∥∥∥ for all k /∈ N , k ≥ N , (5.11)

where the set N is taken from Definition 4.4.

Proof It follows directly from the assumptions of the lemma that there exists a natural
number N such that εk ≤ rk for all k ≥ N . By Step 2 of the algorithm, for any k ≥ N
with k /∈ N we have

∥∥gk
∥∥ > rk + εk with the direction dk calculated in (4.2). Thus,

for such k we get the estimates

∥∥∥dk
∥∥∥ =

∥∥∥gk
∥∥∥ − εk > rk + εk − εk = rk ≥ εk . (5.12)

It follows from (4.1) in Step 1 and from (5.12) that

∥∥∥∇ f (xk)

∥∥∥ ≤
∥∥∥gk

∥∥∥ + εk =
∥∥∥dk

∥∥∥ + 2εk ≤ 3
∥∥∥dk

∥∥∥ ,

which verifies the conclusion of the lemma. ��
The following two theorems provide conditions ensuring the global convergence

of iterative sequences generated by Algorithm 1 with different stepsize selections
to a stationary point of f . The first theorem concerns the IRG methods with the
backtracking stepsize.

Theorem 5.5 Let
{

xk
}

be the iterative sequence generated by Algorithm 1 with the
backtracking linesearch under the condition θ < μ. Suppose in addition to the inexact
gradient condition (4.1) that

∥∥gk − ∇ f (xk)
∥∥ ≤ ρk with ρk ↓ 0 as k → ∞. Assume

furthermore that
{

xk
}

has an accumulation point x̄ , and f satisfies the KL property
at x̄ . Then, x̄ is a stationary point of f , and xk → x̄ as k → ∞.

Proof Since x̄ is an accumulation point of
{

xk
}
, we can find some infinite set J ⊂

IN such that xk J→ x̄ . It follows from the choice of {tk} in (5.1) that
{

f (xk)
}
is

nonincreasing, which implies that

inf
k∈IN f (xk) = inf

k∈J
f (xk) = f (x̄) > −∞.

Therefore, the results of Theorem 5.2 tell us that x̄ is a stationary point of f and that
εk ↓ 0, rk ↓ 0 as k → ∞. We employ Proposition 2.4 to verify that xk → x̄ along the
entire sequence of iterations. Indeed, the imposed assumptions and the convergence
εk ↓ 0, rk ↓ 0 as k → ∞ guarantee that all the requirements of Lemma 5.4 are
satisfied. Pick N ∈ IN such that (5.11) holds. The choice of {tk} in (5.1) ensures the
lower estimate

f (xk) − f (xk+1) ≥ βtk
∥∥dk

∥∥2 for all k ∈ IN. (5.13)
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Combining this with (5.11) and the relation xk+1 = xk + tkdk yields

f (xk) − f (xk+1) ≥ β

3

∥∥∥∇ f (xk)

∥∥∥ ·
∥∥∥xk+1 − xk

∥∥∥ for all k /∈ N , k ≥ N . (5.14)

Observe that when k ∈ N , both sides of (5.14) reduce to zero, and so (5.14) is
satisfied. Therefore, assumption (H1) in Proposition 2.4 holds. Moreover, for k ≥ N
the conditions f (xk+1) = f (xk) and (5.13) imply that dk = 0, and hence, xk+1 = xk .
Thus, assumption (H2) in Proposition 2.4 is satisfied as well. Applying the latter
proposition, we arrive at xk → x̄ as k → ∞ and complete the proof. ��

The second theorem of the above type addresses the IRGmethods with diminishing
and constant selections of the stepsize sequence {tk}.
Theorem 5.6 Let the objective function f satisfy the L-descent condition (2.1) for
some L > 0, and let

{
xk

}
be the sequence generated by Algorithm 1 with θ < μ, and

either diminishing (5.9) or constant stepsizes (5.10). Assume in addition that x̄ is an
accumulation point of the sequence

{
xk

}
and that f satisfies the KL property at x̄ .

Then, x̄ is a stationary point of f , and we have the convergence xk → x̄ as k → ∞.

Proof Observe first that the assumptions imposed here yield those in Theorem 5.3
and Corollary 3.5 but inf f (xk) > −∞. Similarly to the proof of Corollary 3.5,
we can show that

{
f (xk)

}
k≥K is nonincreasing for some K ∈ IN. Since x̄ is an

accumulation point of
{

xk
}
, similarly to the proof of Theorem 5.5, we deduce that

inf f (xk) = f (x̄) > −∞, which verifies the remaining assumption. Therefore, x̄
is a stationary point of f and εk ↓ 0, rk ↓ 0 as k → ∞. The latter convergence
together with the imposed assumptions guarantees the fulfillment of all the conditions
of Lemma 5.4. Let N ∈ IN be such that (5.11) holds. Let δ > 0 be the constant given
in (5.10). From the proof of Corollary 3.5, we find some N1 ≥ N such that

f (xk) − f (xk+1) ≥ δ

2
tk

∥∥∥dk
∥∥∥
2

for all k ≥ N1. (5.15)

The relation xk+1 = xk + tkdk and (5.11), (5.15) tell us that

f (xk) − f (xk+1) ≥ δ

6

∥∥∥∇ f (xk)

∥∥∥
∥∥∥xk+1 − xk

∥∥∥ whenever k /∈ N , k ≥ N1.

(5.16)

Similarly to the proof of Theorem 5.5, we get xk → x̄ as k → ∞ and thus complete
the proof. ��

We will see below that the boundedness of stepsizes away from 0 plays a crucial
role in establishing the rate of convergence of the IRG methods. This property auto-
matically holds for constant stepsizes while may fail for diminishing ones. The next
proposition shows that the property is satisfied for the backtracking stepsize selection
provided that the gradient of the objective function is locally Lipschitzian around accu-
mulation points of iterative sequence. Observe that this property is strictly weaker than
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the (global) Lipschitz continuous of ∇ f . Indeed, C2-smooth functions have locally
Lipschitzian gradients but do not need to have a globally Lipschitzian one as, e.g., for
f (x) := x4.

Proposition 5.7 Let
{

xk
}

be a sequence generated by Algorithm 1 with the back-
tracking stepsize. Suppose in addition to the inexact gradient condition (4.1) that∥∥gk − ∇ f (xk)

∥∥ ≤ ρk with ρk ↓ 0 as k → ∞. Assume moreover that there exists
an infinite set J ⊂ IN such that

{
xk

}
k∈J converges to some x̄ ∈ IRn and that ∇ f is

locally Lipschitzian around x̄. Then, the stepsize sequence {tk}k∈J is bounded away
from zero.

Proof Assume on the contrary that {tk}k∈J is not bounded away from zero. Then, we

find an infinite set J̄ ⊂ J such that tk
J̄−→ 0. Let τ ∈ (0, 1) be an artificial stepsize of

null iterations. Since tk
J̄−→ 0, there exists a number N ∈ IN such that

tk < τ < 1 for all k ≥ N , k ∈ J̄ . (5.17)

This means that k /∈ N whenever k ≥ N , k ∈ J̄ . By Proposition 4.5(i), we have
dk �= 0 for all k ≥ N , k ∈ J̄ . Then, condition (4.2) in Step 2 leads us to

∥∥∥dk
∥∥∥ =

∥∥∥gk
∥∥∥ − εk ≤

∥∥∥gk
∥∥∥ for all k ≥ N , k ∈ J̄ . (5.18)

Since xk J̄→ x̄ , the continuity of ∇ f and the estimate
∥∥∇ f (xk) − gk

∥∥ ≤ ρk → 0

yield that gk J̄→ ∇ f (x̄). Using (5.18), we get that the sequence
{
dk

}
k∈ J̄ is bounded,

and thus,

xk + γ −1tkdk → x̄ as k
J̄→ ∞. (5.19)

Since ∇ f is locally Lipschitzian around x̄ , there exists a positive number δ such
that ∇ f is Lipschitz continuous on B(x̄, δ) with some modulus L > 0. By (5.19) and

xk J̄→ x̄ , we find N1 ≥ N with xk, xk +γ −1tkdk ∈ B(x̄, δ) for all k ≥ N1, k ∈ J̄ . The
Lipschitz continuity of∇ f onB(x̄, δ)withmodulus L yields by [10, PropositionA.24]
the L-descent condition, i.e.,

f (x) − f (y) ≤ 〈∇ f (y), x − y〉 + L

2
‖x − y‖2 for all x, y ∈ B(x̄, δ). (5.20)

Fixing k ∈ J̄ , k ≥ N1, we deduce from the above that dk �= 0, and tk < 1. The exit
condition for the backtracking linesearch implies that

−γ −1βtk
∥∥∥dk

∥∥∥
2

< f (xk + γ −1tkdk) − f (xk). (5.21)
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Applying (5.20) for x = xk + γ −1tkdk and y = xk , we have that

f (xk + γ −1tkdk) − f (xk) ≤ γ −1tk
〈
∇ f (xk), dk

〉
+ Lγ −2t2k

2

∥∥∥dk
∥∥∥
2
.

Combining this with (5.21) leads us to

−γ −1βtk
∥∥∥dk

∥∥∥
2

< γ −1tk
〈
∇ f (xk), dk

〉
+ Lγ −2t2k

2

∥∥∥dk
∥∥∥
2
,

or equivalently to the inequality

0 < γ −1βtk
∥∥∥dk

∥∥∥
2 + γ −1tk

〈
∇ f (xk), dk

〉
+ Lγ −2t2k

2

∥∥∥dk
∥∥∥
2
. (5.22)

Proposition 4.3 and dk �= 0 tell us that 0 <
∥∥dk

∥∥2 ≤ 〈∇ f (xk),−dk
〉
. Then, we deduce

from (5.22) the fulfillment of the estimate

0 < γ −1βtk
〈
∇ f (xk),−dk

〉
+ γ −1tk

〈
∇ f (xk), dk

〉
+ Lγ −2t2k

2

〈
∇ f (xk),−dk

〉
.

Dividing both sides above by γ −1tk
〈∇ f (xk),−dk

〉
> 0, we get 0 < β −1+ Lγ −1tk

2
.

Letting k
J̄−→ ∞ yields β ≥ 1, which contradicts the choice of β ∈ (0, 1). Thus,

we verify that the sequence {tk}k∈J is bounded away from zero, which completes the
proof of the proposition. ��

The last two theorems establish sufficient conditions ensuring the convergence rates
in Algorithm 1 under different stepsize selections. Having the sequence of iterations{

xk
}
generated by this algorithm, we obtain first from Proposition 4.5(iii) that if IN\N

is finite, then
{

xk
}
stops after a finite number of iterations. Thus, we consider the case

where the set IN \ N is infinite and can be numerated as { j1, j2, . . .}. Construct the
sequence

{
zk

}
by

zk := x jk for all k ∈ IN. (5.23)

We have jk+1 ≥ jk + 1 whenever k ∈ IN. If the equality holds therein, then
zk+1 = x jk+1. Otherwise, by taking into account that the indices jk +1, . . . , jk+1 −1
correspond to null iterations, we get that

x jk+1 = x jk+2 = . . . = x jk+1−1 = x jk+1 = zk+1. (5.24)

Therefore, it follows from jk /∈ N that

zk+1 = x jk+1 �= x jk = zk for all k ∈ IN. (5.25)
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Furthermore, Proposition 4.5(iv) tells us that x̄ is an accumulation point of
{
zk

}
if and

only if x̄ is also an accumulation point of
{

xk
}
.

The first theorem about the convergence rates concerns Algorithm 1 with the
backtracking stepsize.

Theorem 5.8 Consider Algorithm 1 with the backtracking stepsize selections under
the condition θ < μ. Let

{
xk

}
be the iterative sequence generated by this algorithm.

Suppose in addition to the inexact gradient condition (4.1) that
∥∥gk − ∇ f (xk)

∥∥ ≤ ρk

with ρk ↓ 0 as k → ∞. Assume further that
{

xk
}

has an accumulation point x̄ , that
f satisfies the KL property at x̄ with ψ(t) = Mtq for some M > 0 and q ∈ (0, 1),
and that ∇ f is locally Lipschitzian around x̄. The following convergence rates are
guaranteed for the sequence

{
zk

}
defined in (5.23):

(i) If q ∈ (0, 1/2], then the sequence
{
zk

}
converges linearly to x̄ .

(ii) If q ∈ (1/2, 1), then there exists a positive constant 
 such that

∥∥∥zk − x̄
∥∥∥ ≤ 
k− 1−q

2q−1 for all large k ∈ IN.

Proof The imposed assumptions yield the fulfillment of those in Theorem 5.5, and so
lead us to the convergence xk → x̄ as k → ∞. Then, the local Lipschitz continuity of
∇ f around x̄ and Proposition 5.7 ensure that the sequence {tk} is bounded away from
zero.

To deduce now the claimed convergence rates in (i)–(iii) from Theorem 2.5, define
τk := t jk for all k ∈ IN. Then, {τk} is also bounded away from zero as a subsequence
of {tk}. Furthermore, using (5.24) and the linesearch conditions, we have

f (zk) − f (zk+1) = f (x jk ) − f (x jk+1) ≥ βt jk

∥∥∥d jk
∥∥∥
2

= β

t jk

∥∥∥x jk+1 − x jk
∥∥∥
2 = β

τk

∥∥∥zk+1 − zk
∥∥∥
2

(5.26)

for all k ∈ IN. Note that all the assumptions of Theorem 5.2 are satisfied, and so
Lemma 5.4 holds. Pick any N ∈ IN from (5.11) and fix k ≥ N . Then, using (5.24)
and (5.11) with taking into account that jk /∈ N for jk ≥ k leads us to

∥∥∥∇ f (zk)

∥∥∥ =
∥∥∥∇ f (x jk )

∥∥∥ ≤ 3

t jk

∥∥∥x jk+1 − x jk
∥∥∥ = 3

τk

∥∥∥zk+1 − zk
∥∥∥ .

Apply finally Theorem 2.5 to
{
zk

}
and {τk} while remembering that zk+1 �= zk for all

k ∈ IN from (5.25). This verifies the convergence rates (i)–(iii) claimed in the theorem.
��

The next theorem on the convergence rates addresses Algorithm 1with the constant
stepsizes.

Theorem 5.9 Let f satisfy the L-descent condition for some L > 0, and let
{

xk
}

be
the iterative sequence generated by Algorithm 1 with the constant stepsizes (5.10)
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under the condition θ < μ. Suppose that
{

xk
}

has an accumulation point x̄ and that
f satisfies the KL property at x̄ with ψ(t) = Mtq for some M > 0 and q ∈ (0, 1).
Then, the following convergence rates are guaranteed for the iterative sequence

{
zk

}

defined in (5.23):

(i) If q ∈ (0, 1/2], then the sequence
{
zk

}
converges linearly to x̄ .

(ii) If q ∈ (1/2, 1), then there exists a positive constant 
 such that

∥∥∥zk − x̄
∥∥∥ ≤ 
k− 1−q

2q−1 for all large k ∈ IN.

Proof Note that our assumptions yield the fulfillment of those in Theorem 5.6, and
thus, we have that xk → x̄ as k → ∞. Defining τk := t jk for all k ∈ IN ensures that
the stepsize sequence {τk} is bounded away from zero. Note that all the assumptions
in Corollary 3.5 hold, and let δ > 0 be the constant taken from in (5.10). By the L-
descent property of f and the constant stepsize selection, we find by arguing similarly
to the proof of Corollary 3.5 a number N ∈ IN such that

f (xk) − f (xk+1) ≥ δ

2
tk

∥∥∥dk
∥∥∥
2

whenever k ≥ N . (5.27)

Since jk ≥ k ≥ N for such k, it follows that

f (zk) − f (zk+1) = f (x jk ) − f (x jk+1) ≥ δ

2
t jk

∥∥∥d jk
∥∥∥
2

= δ

2t jk

∥∥∥x jk+1 − x jk
∥∥∥
2 = δ

2τk

∥∥∥zk+1 − zk
∥∥∥
2
.

Note that all the assumptions of Theorem 5.3 are satisfied. Using this result together
with Lemma 5.4 and then arguing as in the proof of Theorem 5.8, we complete the
proof of this theorem. ��

6 Applications and Numerical Experiments

In this section, we present efficient implementations of the developed IRGmethods to
solving particular classes of optimization problems that appear in practical modeling.
We conduct numerical experiments and compare the results of computations by using
our algorithms with those obtained by applying some other well-knownmethods. This
section is split into two subsections addressing different classes of problems with the
usage of different algorithms.

6.1 Comparison with Classical Inexact Proximal Point Method

This subsection addresses theLeast Absolute Deviations (LAD)Curve-Fitting problem
which is formulated as follows:

minimize g(x) := ‖Ax − b‖1 over x ∈ IRn, (6.1)
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where A is an m × n matrix, b is a vector in IRm , and ‖u‖1 := ∑m
k=1 |uk | for any

u = (u1, . . . , um) ∈ IRm . Problem (6.1) exhibits robustness in outliers resistance and
appears in many applied areas; see, e.g., [11] for more discussions. Observe that (6.1)
is a problem of nonsmooth convex optimization, but we can reduce it to a smooth
problem by using a regularization procedure. In this way, we solve (6.1) by using our
IRG method with constant stepsize and compare our approach with the usage of the
inexact proximal point method (IPPM) proposed by Rockafellar in [46].

To proceed, recall that the Moreau envelope and the proximal mapping of g are
defined by

eg(x) := inf
y∈IRn

ϕx (y) and Proxg(x) := argmin
y∈IRn

ϕx (y), x ∈ IRn, (6.2)

where the minimization mapping ϕx : IRn → IR is given by

ϕx (y) := g(y) + 1

2
‖y − x‖2 , y ∈ IRn . (6.3)

Since g is convex, it follows from [7, Propositions 12.28 and 12.30] that eg is C1-
smooth and that its gradient is Lipschitz continuous with constant 1 being represented
by

∇eg(x) = x − Proxg(x) for all x ∈ IRn . (6.4)

Moreover, the set of minimizers of g coincides with the set of zeros of the gradient
mapping ∇eg .

This tells us that problem (6.1) can be equivalently transformed into the problem of
finding stationary points of the smooth function f := eg . Therefore, it is possible to
solve (6.1) by using Algorithm 1 with constant stepsize, where an inexact gradient gk

of ∇ f (xk) in Step 1 satisfying the condition (4.1) can be chosen from the conditions

gk := xk − pk with
∥∥∥pk − Proxg(xk)

∥∥∥ ≤ εk . (6.5)

Meanwhile, the iterative procedure of IPPM in [46, page 878] for solving (6.1) is given
by

xk+1 = pk with
∥∥∥pk − Proxg(xk)

∥∥∥ ≤ δk, where
∞∑

k=1

δk < ∞. (6.6)

Since the function ϕxk in (6.3) is strongly convexwith constant 1 [38, Definition 2.1.3],
the error bound for the distance between the inexact proximal point pk and the exact
one Proxg(xk) in (6.5) and (6.6) is satisfied if

ϕxk (pk) ≤ inf ϕxk + ωk, (6.7)
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where ωk := ε2k

2
for (6.5) and ωk := δ2k

2
for (6.6) by using [38, Theorem 2.1.8]. In this

numerical experiment, we run the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) of Beck and Teboulle [9] for the dual function of ϕxk until the duality gap is
below ωk , which therefore ensures (6.7).

The initial points are chosen as x1 := 0IRn for both algorithms, while the detailed
settings of each algorithm are given as follows:

• IRG: ε1 = 10, θ = μ = 0.5. Two selections of the initial radius r1 are 20 and
5, which correspond to versions IRG-20 and IRG-5, respectively. To simplify the
iterative sequence of Algorithm 1 when

∥∥gk
∥∥ ≤ rk + εk , we put xk+1 := pk ,

which corresponds to the choice of stepsize tk =
∥∥gk

∥∥

‖gk‖−εk
.

• IPPM:ωk = 1

k p
for all k ∈ IN, where p = 4 or p = 2.1. These selections together

with the definition of ωk in (6.7) ensure that
∑∞

k=1 δk < ∞ as required for IPPM
in (6.6). We also use the labels IPPM-4 and IPPM-2.1 for these versions of IPPM,
respectively.

In this numerical experiment, we let IPPM-2.1 run for 200 iterations and record the
function value obtained by this method. Then, other methods run until their function
values are lower than the recorded one of IPPM-2.1. We stop the methods when the
time reaches the limit of 4000 seconds. The data A, b are generated randomly with
i.i.d. (identically and independent distributed) standard Gaussian entries. To avoid
algorithms from reaching the solution promptly, we consider only the cases where
m ≤ n in (6.1).

The numerical experiment is conducted on a computer with 10th Gen Intel(R)
Core(TM) i5-10400 (6-Core 12M Cache, 2.9–4.3 GHz) and 16GB RAM memory.
The codes are written in MATLAB R2021a. Detailed information for the results is
presented in Table 1, where ‘Test #,’ ‘iter,’ ‘fval,’ ‘time’ mean test number, the number
of iterations, value of the objective function at the last iteration, and the computational
time, respectively. The bold text indicates the running time of the fastest algorithms in
each test. The errors ωk in the inexact proximal point calculations (6.7) and the func-
tion values obtained by the algorithms over the duration of time are also graphically
illustrated in Figs. 3 and 4.

It can be seen from Table 1 that IRG-5 has the best performance in this numerical
experiment. IRG-20 is the second fastest algorithm in Tests 1, 3, 5, while it is slightly
slower than IPPM-4 in Tests 2, 4. In Test 5 with the largest dimensionsm = n = 1200,
IRG-5 is around 4 times faster than IPPM-2.1, while IPPM-4 even cannot reach the
value obtained by IPPM-2.1 within the time limit. In this test, IRG-20 is also around
2.5 times faster than IPPM-2.1.

The graphs in Figs. 3 and 4 show that the errors (in inexact proximal point
calculations) of IRG are automatically adjusted to be suitable for different problems:

• In Tests 1, 3, 5 with m = n, it can be seen from Fig. 4 that IPPM-2.1 is faster than
IPPM-4, which means that the use of larger errors is preferred in this case. Then,
Fig. 3 shows that the errors used in IRG stagnate at most of the iterations. As a
result, the IRG methods use the errors larger than that of the IPPM methods and
thus achieve better performances.
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• In Tests 2, 4 with m < n, IPPM-4 with smaller errors performs better than IPPM-
2.1. In this case, the IRG methods decrease in almost every iteration and achieve
smaller errors in comparison with IPPM-4.

6.2 Comparison with Exact Gradient Descent Methods

In the numerical experiments presented in this subsection, we show that our IRG
method with backtracking stepsize, based on the usage of inexact gradients, performs
well compared with the famous methods employing the exact gradient calculation,
which are the reduced gradient (RG) method and gradient descent (GD) method in
the following setting:

1. The accuracy of the inexact gradient gk is low, i.e.,
∥∥gk − ∇ f (xk)

∥∥ ≤ δk , where
δk is not too small relative to

∥∥∇ f (xk)
∥∥.

2. The accuracy required for the solution is increasing.

To demonstrate this, we choose the following two well-known smooth benchmark
functions in global optimization taken from the survey paper [25].

• The Dixon and Price function is defined by

fdixon(x) := (x1 − 1)2 +
n∑

i=2

i
(
2x2i − xi−1

)2
, x ∈ IRn .

The global minimum of this function is f̄dixon = 0, and the two solutions x∗, y∗ ∈
IRn are

⎧
⎨

⎩

x∗
1 = 1,

x∗
k =

√
xk−1

2
for k = 2, . . . , n

and by y∗
k = x∗

k for all k = 1, . . . , n − 1, y∗
n = −x∗

n .
• The Rosenbrock 1 function defined by

frosen(x) :=
n−1∑

i=1

[
100

(
xi+1 − x2i

)2 + (xi − 1)2
]

, x ∈ IRn .

The global minimum of this function is f̄rosen = 0, and the unique solution is
(1, . . . , 1) ∈ IRn .

Since the information about the convexity and the Lipschitz continuity of gradients of
the chosen objective functions is unknown, our experiments are conducted by algo-
rithms, where stepsizes are obtained from the corresponding linesearches. We use the
following abbreviations:

• GD: Gradient descent method with the backtracking linesearch.
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• RGB and IRGB: Reduced gradient method with the backtracking linesearch and
Inexact reduced gradient method with the backtracking linesearch; see (5.1).

To generate the inexactness for testing purposes, given the gradient error δk :=
min {εk, ρk} as in (4.1), we create an inexact gradient gk by adding a random vec-
tor with the norm 0.5δk to the exact gradient ∇ f (xk). To ensure manually controlled
errors between the exact gradients and inexact ones that do not decrease so fast, we
choose ρk := 1/ log(k + 1). For all the methods in our experiments, the linesearch
parameters are chosen as β = 0.7 and γ = 0.5. The initial radii ε1 = r1 = 5 and
the radius reduction factors θ = 0.7, μ = 0.7 are also used for the RG and IRG
methods. To avoid the initial points from being identical with the solutions, we choose
x1 := 0IRn on tests using the Rosenbrock 1 function. In the tests using the Dixon and
Price functions, we choose x1 := 1IRn to avoid the algorithms from going to different
solutions. The condition

‖∇ f (x)‖ ≤ ν, where either ν = 0.01 or ν = 0.001.

is used as the stopping criterion for all the tests. The detailed information of the
numerical experiments and the achieved numerical results is presented in Table 2.
The problem names are given in the forms Dn and Rn, where D stands for Dixon and
Price, R stands for Rosenbrock 1, and n is the dimension of the tested problem. In
these tables, ‘Iter,’ ‘fval’ stand for the number of iterations and the function value at
the last iteration.

It can be seen that the performance of the IRG and RGmethods in Tests D200 with
ν = 0.01 and ν = 0.001 is better than that of the GD method, while the latter is more
efficient in the other tests. It is reasonable that GD usually performs better since it
uses the exact gradient, while RGB uses the reduced gradient and IRGB uses even the
inexact one. In the worst case in Test R1000 with ν = 0.01, the number of iterations
of IRGB is equal around 1.3 times that of GD. It shows that IRGB does not suffer
much from the use of inexact gradient compared with the performance of GD using
the exact gradient. Table 2 also shows that the decrease of ν in 10 times results in the
increase in the number of iterations in IRGBwith the rate at most 1.7, where the worst
case corresponds to the tests D500. This rate is similar to the rate obtained by the
GD method in these tests, which confirms that our IRG method with the backtracking
stepsize does not suffer from error accumulation.

The graphs below show that the errors δk of the inexact gradient used in IRGB
are automatically adjusted to be not too small or too large compared with

∥∥∇ f (xk)
∥∥.

This confirms the intuitive conclusion on the IRGmethods discussed inRemark 4.1(ii).
Figure5 shows that the selections of errors δk = k−p, p ≥ 1 in the existing methods
[10, 20, 23] do not fit the unexpectedfluctuations in the normof the exact gradient given
in the tests using the Rosenbrock function, which may lead to the over approximation
and under approximation issues discussed in Sect. 1.
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7 Conclusions and Further Research

In this paper, we propose and develop the inexact reduced gradient methods with dif-
ferent stepsize selections to solve problems of nonconvex optimization. Thesemethods
achieve stationary accumulation points and, under additional assumptions on the KL
property of the objective functions, the global linear convergence. The convergence
analysis of the developed algorithms is based on novel convergence results established
for general linesearch methods. The theoretical and numerical comparisons show that
our methods do not suffer much from the error accumulation and are able to automati-
cally adjust the errors in the exact gradient approximations to get a better performance
than the existing methods using common selections of errors.

In our future research, we aim at developing the IRG methods in different direc-
tions, which include designing zeroth-order algorithms by using practical methods for
approximating gradients, designing inexact versions of methods frequently used in
nonconvex nonsmooth optimization, e.g., the proximal point and proximal gradient
methods, and also designing appropriate IRG methods for problems of constrained
optimization. The obtained results would allow us to develop new applications to
important classes of models in machine learning, statistics, and related disciplines.

Acknowledgements The authors are very grateful to anonymous reviewers for their helpful remarks and
suggestions, which allowed us to improve the original presentation.
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