
Mathematical Programming
https://doi.org/10.1007/s10107-025-02255-8

FULL LENGTH PAPER

Series A

Globally convergent derivative-free methods in nonconvex
optimization with and without noise

Pham Duy Khanh1 · Boris S. Mordukhovich2 · Dat Ba Tran2

Received: 25 June 2024 / Accepted: 29 June 2025
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2025

Abstract
This paper addresses the study of nonconvex derivative-free optimization problems,
where only information of either smooth objective functions or their noisy approx-
imations is available. General derivative-free methods are proposed for minimizing
differentiable (not necessarily convex) functions with globally Lipschitz continuous
gradients, where the accuracy of approximate gradients is interacting with stepsizes
and exact gradient values. Analysis in the noiseless case guarantees convergence of
the gradient sequence to the origin as well as global convergence with construc-
tive convergence rates of the sequence of iterates under the Kurdyka-Łojasiewicz
property. In the noisy case, without any noise level information, the designed algo-
rithms reach near-stationary points with providing estimates on the required number
of iterations and function evaluations. Addressing functions with locally Lipschitzian
gradients, two algorithms are introduced to handle the noiseless and noisy cases,
respectively. The noiseless version is based on the standard backtracking linesearch
and achieves fundamental convergence properties similarly to the global Lipschitzian
case. The noisy version is based on a novel dynamic step linesearch and is shown
to reach near-stationary points after a finite number of iterations when the Polyak-

B.S.Mordukhovich: Research of this author was partly supported by the US National Science Foundation
under grants DMS-1808978 and DMS-2204519, by the Australian Research Council under grant
DP-190100555, and by Project 111 of China under grant D21024. D. B. Tran: Research of this author was
partly supported by the US National Science Foundation under grants DMS-1808978 and DMS-2204519.
P. D. Khanh: This research was funded by the National Key Program for the Development of Mathematics
in the period 2021–2030 under the National Science and Technology Project titled “Developing
fundamental algorithms for finding optimal paths in 2.5 (terrain)- and 3-dimensional spaces" (Project
Code: DTDLCN.05/25).

B Pham Duy Khanh
khanhpd@hcmue.edu.vn

Boris S. Mordukhovich
aa1086@wayne.edu

Dat Ba Tran
tranbadat@wayne.edu

1 Group of Analysis and Applied Mathematics, Department of Mathematics, Ho Chi Minh City
University of Education, Ho Chi Minh City, Vietnam

2 Department of Mathematics, Wayne State University, Detroit, Michigan, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-025-02255-8&domain=pdf

P. D. Khanh et al.

Łojasiewicz inequality is imposed. Numerical experiments are conducted on a diverse
set of test problems to demonstrate more robustness of the newly proposed algorithms
in comparison with other finite-difference-based schemes and some highly efficient,
production-ready codes from the SciPy library. The experiments also demonstrate
that the newly proposed methods can be integrated with acceleration techniques from
the literature of smooth optimization while significantly enhancing numerical perfor-
mance and outperforming current state-of-the-art derivative-free algorithms.

Keywords Derivative-free optimization · Nonconvex smooth objective functions ·
Finite differences · Black-box optimization · Noisy optimization · Zeroth-order
optimization · Globally convergent algorithms

Mathematics Subject Classification 90C25 · 90C26 · 90C30 · 90C56

1 Introduction

This paper is devoted to the development of novel derivative-free methods of solving
unconstrained optimization problems given in the form

minimize f (x) subject to x ∈ IRn, (1.1)

where f : IRn → IR is a continuously differentiable (C1-smooth) function, not
necessarily convex. In the context of derivative-free optimization, we assume that
only information of either f (x) (noiseless case) or its noisy approximation φ(x) =
f (x) + ξ(x) (noisy case) is available, where ξ : IRn → IR is the noise function
bounded by a positive constant ξ f . These problems have received much attention with
a variety of methods being developed over the years [5, 17]. The major developments
in this vein are provided by the Nelder-Mead simplex method [45, 51], direct search
methods [31, 34], conjugate direction method [57], trust-region methods [18, 57],
and finite-difference-based methods [6, 8, 52, 63, 65]. Applications of derivative-free
optimization methods [2, 5, 17] have also gained a lot of interest since many efficient
methods, includingNelder-Mead, Powell (a short nameof Powell’s conjugate direction
method) [57], COBYLA [58], and L-BFGS-B, are implemented as production-ready
codes in SciPy [66], a well-known Python library. More recently, numerous empirical
results conducted by Shi et al. in [65] show that derivative-free optimization meth-
ods based on finite differences are accurate, efficient, and in some cases superior to
other state-of-the-art derivative-free optimization methods developed in the literature.
Meanwhile, extensive numerical comparisons in Berahas et al. [7], together with fur-
ther analysis by Scheinberg [61], also tell us that the accuracy of gradients obtained
from standard finite differences is significantly higher than from randomized schemes
[21, 28, 29, 52]. These empirical results suggest that the methods using standard finite
differences have much to be recommended, and that the research in this direction
should be strongly encouraged.

When no error is present within the function evaluations, implementing finite dif-
ference approximations for gradient descent methods is rather simple because it is

123

Globally convergent derivative-free…

possible to use a fixed, sufficiently small finite difference interval (referred to as GD
(fixed) for the sake of brevity). However, dealing with noisy problems is more chal-
lenging since finding the optimal finite difference interval requires not only the noise
level information but also the higher-order derivatives of the function that are often
unavailable. Hence this topic attracts many studies, which develop finite-difference-
based methods under different types of noise. Kelley et al. [16, 26, 38] proposed the
implicit filtering algorithm based on a finite difference approach to deal with noisy
smooth box-constrained optimization problems with the noise being decayed near
local minimizers. Berahas et al. [6, 8] developed finite-difference-based linesearch
methods for the minimization of smooth functions with bounded noise. The schemes
to adapt the finite difference intervals were also studied by Gill et al. [25], Moré and
Wild [49], and recently by Shi et al. [63, 64].

Motivations. Although methods of this type are often used in practice to solve
derivative-free smooth problems with and without noise, there are still some sig-
nificant concerns related to their theoretical and practical developments that should be
addressed.

• Analysis in the noiseless case: In the noiseless case, due to the usage of a fixed finite
difference interval, GD (fixed) methods do not obtain sufficient convergence prop-
erties compared to standard gradient descent methods. These properties include
the stationarity of accumulation points and the convergence of the sequence of
iterates to nonisolated stationary points under the Kurdyka-Łojasiewicz (KL) con-
dition [3, 40–42, 44, 47], which is a rather mild regularity condition satisfied for
the vast majority of objective functions in practice. Implicit filtering [38], which
allows the finite difference interval to approach zero, is regarded as a more practi-
cal approach in the literature on derivative-free optimization with the stationarity
of accumulation points guaranteed. However, the method has limitations in both
practical and theoretical aspects as simply allowing the finite difference interval
to approach zero without careful adaptive modifications, may result in an approx-
imate gradient that is not even a descent direction. The versions presented in [39,
Theorem 1] and [38, Theorem 7.1.1] require that the number of iterations with
failed linesearch be finite, a condition not universally guaranteed. Similarly, the
version in [53, Theorem 9.2] mandates that approximate gradients remain smaller
than the finite difference interval, another assumption that may not always hold.
From a broader perspective, the convergence of gradient descent with decreasing
finite difference intervals can be derived from results on inexact gradient descent
methods with decreasing error. However, its general applicability remains unclear.
To the best of our knowledge, the most general related results with fundamental
assumptions were presented in [10, Proposition 1] and [43, Theorem 3.3]. Both
results necessitate that the error diminishes at a specific rate consistent with the
stepsize. Furthermore, convergence rates are not analyzed in those works, which
is a crucial aspect for achieving better numerical performance in methods of this
type.

• Dealing with small noise without any noise level information: The practical imple-
mentations of finite-difference-based algorithms also face issues in this case since
choosing sufficiently small finite difference intervals makes GD (fixed) methods

123

P. D. Khanh et al.

perform poorly due to the roundoff error, while using an adaptive scheme as in [25,
49, 63] becomes inefficient since the noise level is unknown. Although somemeth-
ods for approximating the noise level may exist and be helpful in practice, their
usage could significantly increase computational costs. This is particularly evi-
dent when the noise is not independent and identically distributed, which requires
approximations for local noise levels to be conducted at every iteration.

• Assumption on the gradient global Lipschitz continuity, i.e., the C1,1L property
of objective functions: This assumption seems to be omnipresent in derivative-
free linesearch methods; see, e.g., [16, Theorem 2.1], [6, Assumption A1], and
[8, Assumption 1.1]. For general derivative-free trust-region methods, Conn et
al. [18] proved global convergence results in the case of smooth minimization
problems while assuming the Lipschitz continuity of either the gradient or the
Hessian; see [18, Assumptions 3.1 and 3.2]. Such properties were employed in the
proximal point method adapted to derivative-free smooth optimization problems
by Hare and Lucet [Assumption 1]. In [62], the class of smooth functions with
Hölderian gradients, being larger than the class of C1,1L functions, was studied.
However, we are not familiar with any efficient finite-difference-based method
considering specifically the class of smooth functions with locally Lipschitzian
gradients, i.e., the class of C1,1 functions, which is much broader than the class
of C1,1L ones. This is in contrast to the exact versions of gradient descent methods
that obtain various convergence properties including stationarity of accumulation
points for the version with backtracking stepsizes addressing C1-smooth functions
[9, Proposition 1.2.1] and the global convergence for the version with sufficiently
small stepsizes in the class of definable C1,1 functions [36]. This raises the need for
the design and analysis of finite-difference-based methods concerning the class of
C1,1 functions, which is the best we can hope in this context since the error bounds
for finite differences are not available outside of this class.

Contributions. Having in mind the above discussions, we first address C1,1L optimiza-
tion problems and propose the derivative-free method with constant stepsize (DFC).
The method offers generalizations and improvements in both theoretical and practi-
cal aspects compared to GD (fixed) algorithms. The generalizations imply that other
gradient approximation methods can be employed in DFC besides finite differences,
provided that the approximation methods adhere to general conditions outlined in
Definition 3.1. The improvements of DFC in comparison with GD (fixed) algorithms
are as follows.

• In the theoretical aspects, DFC comes with a detailed convergence analysis, which
is presented in Section 4 and contains the following.

– In the noiseless case, under standard assumptions, our analysis establishes the
convergence to the origin for the gradient sequence, global convergence of
iterates under the KL property, and constructive convergence rates depending
on the KL exponents. Note that none of these properties can be achieved by
GD (fixed) algorithms, and while the implicit filtering algorithm [38] fulfills
some them, certain nonstandard additional assumptions are further required.

123

Globally convergent derivative-free…

– In the noisy case, the finite convergence of the sequence of iterates to a near-
stationary point is established, alongwith estimates on the number of iterations
and function evaluations needed to reach the near-stationary point. The con-
struction of DFC and all of its convergence properties in the noisy case do
not require the knowledge of noise levels, although it does require some mild
conditions for initialization.

• In the practical aspects, DFC achieves at least similar, or even better, numerical
performance in comparison with GD (fixed) methods in the noiseless case being
more efficient in the presence of small noise with an unknown noise level. These
numerical results are presented in Section 6.

Note that the main feature in the algorithmic constructions of DFC, which allows us
to achieve the above goals, is the adaptivity of the finite difference interval. Contrarily
to using a fixed small interval as in GD (fixed) methods, we start with a much larger
finite difference interval and decrease it along the sequence of iterates if a descent
condition is not satisfied. The finite difference interval in DFC also interacts with the
approximate Lipschitz constant (or equivalently, the stepsize), which creates more
robustness for the algorithm. This interaction distinguishes DFC from the methods
in [25, 49, 63, 64], where the finite difference interval is constructed independently
from the stepsize. By adopting this approach, we are able to theoretically derive the
fundamental convergence properties of DFC for both noiseless and noisy functions.
Practically this approach helps DFC avoiding roundoff errors as much as possible
to ensure the quality of the gradient approximation, which leads us to the numerical
performance highlighted above.

Next we address the class of C1,1 functions. Due to the complex structure of func-
tions in this class, we introduce two different algorithms as follows.

• DFB: Derivative-free method with backtracking linesearch to deal with noiseless
problems and problems with small noise. This algorithm is inspired by DFC, with
the primary difference that a backtracking linesearch step is performed in each
iteration, similarly to the standard approach of gradient descent methods when
dealing with C1,1 functions. The analysis is conducted in the noiseless case and
establishes the stationarity of the accumulation point,global convergenceunder the
KL property, and constructive convergence rates depending on the KL exponents.

• DFD: Derivative-free method with dynamic step linesearch to deal with problems
with large noise and known noise level. To be more specific, in each iteration
DFD uses a dynamic step linesearch to approximate the local Lipschitz constant
of the gradient in a region around the current iterate. The approximate Lipschitz
constant is then used for determining both the stepsize and the finite difference
interval. By employing this approach, DFD exhibits more favorable numerical
behavior compared to other finite difference schemes [26, 52, 63] as demonstrated
in Figure 2. This example also shows that the standard backtracking linesearch
does not work well for functions of C1,1 class with large noise, which is the main
motivation for us to implement the dynamic step linesearch in DFD. The global
analysis of DFD demonstrates that the algorithm always makes progress whenever
the gradient at the current iterate is not near the origin. It is also established that the
sequence of iterates finds a near-stationary point after a finite number of iterations,

123

P. D. Khanh et al.

with a constructive estimate given when the Polyak-Łojasiewicz inequality (cf.
[55] and [47]) is satisfied.

To demonstrate the practical aspects of our study, extensive numerical experiments
on synthetic problems with and without noise are conducted in Section 6. The results
when the noise is small show that DFC and DFBmethods do improve the performance
of GD (fixed) methods as well as the performance of the implicit filtering (IMFIL)
algorithm [26] and random gradient-free (RG) algorithm [52]. When the noise is
large, our DFD demonstrates its numerical reliability in comparison with SciPy [66]
production-ready codes, including Powell, COBYLA and L-BFGS-B algorithms.

It is also demonstrated that, similar to standard gradient descentmethods, the numer-
ical performance of DFC can be significantly improved by incorporating additional
steps such as those based on either quasi-Newton techniques [53], or Polyak momen-
tum [55]. The experiments show that these variants not only enhance the basic version
of DFC but also outperform the state-of-the-art Powell method from the Scipy library
in most cases. Given the extensive development of gradient-based methods in the opti-
mization literature, this phenomenon highlights not only the potential of the algorithms
but also opens new research directions for developing DFC variants that are efficient
in diverse scenarios and come with rigorous theoretical guarantees.

Related Works. The adaptivity of the finite difference interval to ensure the quality
of the approximate gradient is a main feature employed in many finite-difference-
basedmethods. Cartis and Scheinberg [14] analyzed a general linesearch algorithm for
smooth functions without noise under the major condition that the gradient estimates
are sufficiently accurate with a certain probability. This analysis is then extended
in Berahas et al. [6] to the case where the function values are noisy. The practical
schemes to choose the finite difference intervals adaptively based on testing ratios
were also studied by Gill et al. [25], Shi et al. [63, 64], and heuristically by Moré
and Wild [49]. The adaptivity in the selection of the finite difference interval is also
related to the dynamic accuracy of gradient approximations, which is considered for
adaptive regularization algorithms without noise in [13, 30] and with noise in [12, 15].
Recently, [20] also employed finite differences for implementing regularized Newton
methods, which adaptively adjust the finite difference interval and link it with the
cubic regularization parameter.

Among the aforementioned publications, [14] and [6] are the most related to our
DFC development for C1,1L functions. These results are discussed in more detail in
Remark 4.4 and Remark 4.11.

Another type of optimization methods commonly used in the derivative-free setting
is derived from model-based trust-region algorithms as presented in [17, 18] and
the references therein. There are significant differences arising from the fundamental
ideas behind the construction of trust-region methods and the linesearch algorithms
presented in this work. The former methods construct local models to approximate
the objective function at each iteration and restrict the updates to a region where this
approximation is reliable. In [17, Chapter 10], the size of the trust region is adaptively
adjusted based on howwell the model predicts the actual improvement in the objective
function while attempting to balance both exploration and exploitation of iterates.
This also highlights that both the accuracy of the model and the stepsize of the iterate

123

Globally convergent derivative-free…

are defined by the trust-region. In contrast, our approach uses finite differences to
approximate the gradients and employs them as the direction for updating the iterate
without any restriction on the stepsize. Additionally, the accuracy of the gradient and
stepsize are determined separately. Both the direction and stepsize of our method can
be flexibly adjusted by incorporating acceleration techniques, further emphasizing its
advantages.

Organization. The rest of the paper is organized as follows. Section 2 presents
some basic definitions and preliminaries used throughout the entire paper. Section 3
examines two types of gradient approximations that include finite differences. The
main parts of our work, concerning the design and convergence properties of general
derivative-freemethods under the global and local Lipschitz continuity of the gradient,
are given in Section 4 and Section 5, respectively. Numerical experiments, which com-
pare the efficiency of the proposedmethodswith other derivative-freemethods for both
noisy and noiseless functions, are conducted in Section 6. Concluding remarks on the
main contributions of this paper together with some open questions and perspectives
of our future research are presented in Section 7.

2 Preliminaries

First we recall some basic notions and notation frequently used in the paper. All our
considerations are given in the space IRn with the Euclidean norm ‖ · ‖. For any
i = 1, . . . , n, let ei denote the i th basic vector in IRn . As always, IN := {1, 2, . . .}
signifies the collection of natural numbers. For any x ∈ IRn and ε > 0, let B(x, ε) and
B(x, ε) stand for the open and closed balls centered at x with radius ε, respectively.
When x = 0, these balls are denoted simply by εB and εB.

Recall that a mapping G : IRn → IRm is Lipschitz continuous on a subset D of IRn

if there exists a constant L > 0 such that we have

‖G(x) − G(y)‖ ≤ L ‖x − y‖ for all x, y ∈ D.

If D = IRn , the mapping G is said to be globally Lipschitz continuous. The local
Lipschitz continuity of G on IRn is understood as the Lipschitz continuity of this
mapping on every compact subset of IRn . The latter is equivalent to saying that for
any x ∈ IRn there is a neighborhood U of x such that G is Lipschitz continuous on
U . In what follows, we denote by C1,1 the class of C1-smooth mappings that have
a locally Lipschitz continuous gradient on IRn and by C1,1L the class of C1-smooth
mappings that have a globally Lipschitz continuous gradient with the constant L > 0
(i.e., L-Lipschitz continuous) on the entire space.

Our convergence analysis of the numerical algorithms developed in the subsequent
sections largely exploits the following important results and notions. The first result
taken from [35, Lemma A.11] presents a simple albeit very useful property of real-
valued functions with Lipschitz continuous gradients.

Lemma 2.1 Let f : IRn → IR, let x, y ∈ IRn, and let L > 0. If f is differentiable
on the line segment [x, y] with its derivative being L-Lipschitz continuous on this

123

P. D. Khanh et al.

segment, then

| f (y) − f (x) − 〈∇ f (x), y − x〉| ≤ L

2
‖y − x‖2 . (2.1)

The second lemma established in [40, Section 3] is crucial in the convergence analysis
of the general linesearch methods developed in this paper.

Lemma 2.2 Let
{

xk
}

and
{
dk
}

be sequences in IRn satisfying the condition

∞∑

k=1

∥∥∥xk+1 − xk
∥∥∥ ·

∥∥∥dk
∥∥∥ < ∞. (2.2)

If x̄ is an accumulation point of
{

xk
}

and if the origin is an accumulation point of{
dk
}
, then there exists an infinite set J ⊂ IN such that

xk J→ x̄ and dk J→ 0. (2.3)

Next we recall the classical results from [22, Section 8.3.1] that describe important
properties of accumulation points generated by a sequence satisfying the limit condi-
tion introduced by Ostrowski [54].

Lemma 2.3 Let
{

xk
} ⊂ IRn be a sequence satisfying the Ostrowski condition

lim
k→∞ ‖xk+1 − xk‖ = 0. (2.4)

Then the following assertions are fulfilled:
(i) If

{
xk
}

is bounded, then the set of accumulation points of
{

xk
}

is nonempty,
compact, and connected in IRn.

(ii) If
{

xk
}

has an isolated accumulation point x̄ , then this sequence converges to
x̄ .

The version of the fundamentalKurdyka-Łojasiewicz (K L) property formulated below
is taken from Absil et al. [1, Theorem 3.4].

Definition 2.4 Let f : IRn → IR be a differentiable function. We say that f satisfies
the KL property at x̄ ∈ IRn if there exist a number η > 0, a neighborhoodU of x̄ , and a
nondecreasing function ψ : (0, η) → (0,∞) such that the function 1/ψ is integrable
over (0, η) and we have

‖∇ f (x)‖ ≥ ψ
(

f (x) − f (x̄)
)
for all x ∈ U with f (x̄) < f (x) < f (x̄) + η.

(2.5)

Remark 2.5 If f satisfies theKLproperty at x̄ with a neighborhoodU , it is clear that the
sameproperty holds for any x ∈ U where f (x) = f (x̄). It has been realized that theKL
property is satisfied in broad settings. In particular, it holds at every nonstationary point

123

Globally convergent derivative-free…

of f ; see [3, Lemma 2.1 and Remark 3.2(b)]. Furthermore, it is proved in the seminal
paper by Łojasiewicz [47] that any analytic function f : IRn → IR satisfies the KL
property at every point x̄ with ψ(t) = Mtq for some q ∈ [0, 1). As demonstrated in
[40, Section 2], theKL property formulated inAttouch et al. [3] is stronger than the one
in Definition 2.4. Typical smooth functions that satisfy the KL property from [3], and
hence the one from Definition 2.4, are smooth semialgebraic functions and also those
from the more general class of functions known as definable in o-minimal structures;
see [3, 4, 44]. The latter property is fulfilled, e.g., in important models arising in deep
neural networks, low-rank matrix recovery, principal component analysis, and matrix
completion as discussed in [11, Section 6.2].

Next we present, based on [1], some descent-type conditions ensuring the global
convergence of iterates for smooth functions that satisfy the KL property.

Proposition 2.6 Let f : IRn → IR be a C1-smooth function, and let the sequence of
iterations

{
xk
} ⊂ IRn satisfy the following conditions:

(H1) (primary descent condition). There exists σ > 0 such that for sufficiently large
k ∈ IN, we have

f (xk) − f (xk+1) ≥ σ

∥∥∥∇ f (xk)

∥∥∥ ·
∥∥∥xk+1 − xk

∥∥∥ .

(H2) (complementary descent condition). For sufficiently large k ∈ IN, we have

[
f (xk+1) = f (xk)

] �⇒ [xk+1 = xk].

If x̄ is an accumulation point of
{

xk
}

and f satisfies the KL property at x̄ , then xk → x̄
as k → ∞.

When the sequence under consideration is generated by a linesearch method and sat-
isfies some conditions stronger than (H1) and (H2) in Proposition 2.6, its convergence
rates are established in [40, Proposition 2.4] under the KL property with ψ(t) = Mtq

as given below.

Proposition 2.7 Let f : IRn → IR be a C1-smooth function, and let the sequences{
xk
} ⊂ IRn, {τk} ⊂ [0,∞),

{
dk
} ⊂ IRn satisfy the iterative condition xk+1 = xk +

τkdk for all k ∈ IN. Assume that for sufficiently large k ∈ IN, we have xk+1 �= xk

together with the estimates

f (xk) − f (xk+1) ≥ βτk

∥∥∥dk
∥∥∥
2

and
∥∥∥∇ f (xk)

∥∥∥ ≤ α

∥∥∥dk
∥∥∥ , (2.6)

where α, β are some positive constants. Suppose in addition that the sequence {τk} is
bounded away from 0 (i.e., there exists some τ̄ > 0 such that τk ≥ τ̄ for sufficiently
large k ∈ IN), that x̄ is an accumulation point of

{
xk
}
, and that f satisfies the KL

property at x̄ with ψ(t) = Mtq for some M > 0 and q ∈ [1/2, 1). Then the following
convergence rates are guaranteed:

123

P. D. Khanh et al.

(i) If q = 1/2, then the sequence
{

xk
}

converges linearly to x̄ .
(ii) If q ∈ (1/2, 1), then we have the estimate

∥∥∥xk − x̄
∥∥∥ = O

(
k− 1−q

2q−1

)
.

Remark 2.8 Observe that the two conditions in (2.6) together with the boundedness
away from 0 of {τk} yield assumptions (H1), (H2) in Proposition 2.6. Indeed, (H1) is
verified by the following inequalities:

f (xk) − f (xk+1) ≥ βτk

∥∥∥dk
∥∥∥
2 = β

∥∥∥τkdk
∥∥∥ ·

∥∥∥dk
∥∥∥

≥ β

α

∥∥∥xk+1 − xk
∥∥∥ ·

∥∥∥∇ f (xk)

∥∥∥ .

In addition, since {τk} is bounded away from 0, there exists τ̄ > 0 such that τk ≥ τ̄ for
sufficiently large k ∈ IN. Then for such k, the condition f (xk+1) = f (xk) implies that
dk = 0 by the first inequality in (2.6), and hence xk+1 = xk by the iterative procedure
xk+1 = xk + τkdk , which therefore verifies (H2).

3 Global and local approximations of gradients

This section is devoted to analyzing several methods for approximating gradients of
a smooth function f : IRn → IR by using only information about the function values
that frequently appears in derivative-free optimization. Methods of this type include,
in particular, finite differences [53, Section 9], the Gupal estimation [33], and gradient
estimation via linear interpolation [7]. We construct two types of approximations that
cover all these methods.

Definition 3.1 Let f : IRn → IR be a C1-smooth function. A mapping G : IRn ×
(0,∞) → IRn is:

(i) A global approximation of ∇ f if there is a constant C > 0 such that

‖G(x, δ) − ∇ f (x)‖ ≤ Cδ for any (x, δ) ∈ IRn × (0,∞). (3.1)

(ii) A local approximation of ∇ f if for any bounded set � ⊂ IRn and any
 > 0,
there is C > 0 with

‖G(x, δ) − ∇ f (x)‖ ≤ Cδ for any (x, δ) ∈ � × (0,
]. (3.2)

Remark 3.2 We have the following observations related to Definition 3.1:
(i) If G is a global approximation of ∇ f , then it is also a local approximation of

∇ f .

123

Globally convergent derivative-free…

(ii)Assume thatG is a local approximation of∇ f and that x ∈ IRn . Thenwe deduce
from (3.2) with � = {x} and any
 > 0 the condition

lim sup
δ↓0

‖G(x, δ) − ∇ f (x)‖
δ

< ∞. (3.3)

Next we formulate the two standard types of finite differences taken from [53, Sec-
tion 9], which serve as typical examples of the approximations in Definition 3.1.

• Forward finite difference:

G(x, δ) := 1

δ

n∑

i=1

(f (x + δei) − f (x)) ei for any (x, δ) ∈ IRn × (0,∞). (3.4)

• Central finite difference:

G(x, δ) := 1

2δ

n∑

i=1

(f (x + δei) − f (x − δei)) ei for any (x, δ) ∈ IRn × (0,∞).

(3.5)

In the constructions above, the positive number δ is called the finite difference interval.

Remark 3.3 Let us now recall some results on the error bounds for the two types of
finite differences that are mentioned above.

(i) The global error bound for the forward finite difference (see, e.g., [7, Theo-
rem 2.1] and [53, Section 8]) shows that it is a global approximation of ∇ f when
f ∈ C1,1L . The local error bound for the forward finite difference is also given in [53,
Exercise 9.13].

(ii) On the other hand, the global error bound for the central finite difference (see,
e.g., [7, Theorem 2.2] and [53, Lemma 9.1]) requires that f is twice continuously
differentiablewith aLipschitz continuousHessian,which is a rather restrictive assump-
tion.

For completeness, we present a short proof showing that both types of finite differ-
ences are global approximations of ∇ f when f ∈ C1,1L and are local approximations
of ∇ f when f ∈ C1,1.
Proposition 3.4 Let f : IRn → IR be a C1-smooth function. Then the following hold:

(i) Given x ∈ IRn and δ > 0, if the gradient ∇ f is Lipschitz continuous on B(x, δ)

with the constant L > 0, then both forward finite difference (3.4) and central finite
difference (3.5) satisfy the estimate

‖G(x, δ) − ∇ f (x)‖ ≤ L
√

nδ

2
. (3.6)

(ii) If the gradient ∇ f is globally Lipschitz continuous with the constant L > 0,
then both forward finite difference (3.4) and central finite difference (3.5) satisfy the

123

P. D. Khanh et al.

estimate

‖G(x, δ) − ∇ f (x)‖ ≤ L
√

nδ

2
for any (x, δ) ∈ IRn × (0,∞). (3.7)

(iii) If the gradient ∇ f is locally Lipschitz continuous, then for any bounded set
� ⊂ IRn and for any
 > 0, there exists a positive number L such that both forward
finite difference (3.4) and central finite difference (3.5) satisfy the estimate

‖G(x, δ) − ∇ f (x)‖ ≤ L
√

nδ

2
for any (x, δ) ∈ � × (0,
]. (3.8)

Proof Webeginwith verifying (i) for each type of the aforementionedfinite differences
and then employ (i) to justify (ii) and (iii) for both types.

(i) Take any x ∈ IRn, δ > 0 and assume that∇ f is Lipschitz continuous on B(x, δ)

with the constant L > 0. Consider first the case where G is given by the forward finite
difference (3.4). Then for any i = 1, . . . , n, we get by employing Lemma 2.1 that

| f (x + δei) − f (x) − 〈∇ f (x), x + δei − x〉| ≤ L

2
‖x + δei − x‖2 = Lδ2

2
, (3.9)

which is clearly equivalent to

∣∣∣∣
1

δ
(f (x + δei) − f (x)) − ∂ f

∂xi
(x)

∣∣∣∣ ≤ Lδ

2
.

Since the latter inequality holds for all i = 1, . . . , n, we deduce that

‖G(x, δ) − ∇ f (x)‖ =
√√√√

n∑

i=1

(
1

δ
(f (x + δei) − f (x)) − ∂ f

∂xi
(x)

)2

≤ L
√

nδ

2
,

which therefore verifies estimate (3.6).
Assume now that G is given by the central finite difference (3.5). Employing

Lemma 2.1 gives us for any i = 1, . . . , n the two estimates

| f (x + δei) − f (x) − 〈∇ f (x), (x + δei) − x〉| ≤ Lδ2

2
,

| f (x) − f (x − δei) − 〈∇ f (x), x − (x − δei)〉| ≤ Lδ2

2
.

Summing up the above estimates and using the triangle inequality, we deduce that

| f (x + δei) − f (x − δei) − 2 〈∇ f (x), δei 〉| ≤ Lδ2,

123

Globally convergent derivative-free…

which implies in turn the conditions

∣∣∣∣
1

2δ
(f (x + δei) − f (x − δei)) − ∂ f

∂xi
(x)

∣∣∣∣ ≤ Lδ

2

for all i = 1, . . . , n. Therefore, we get

‖G(x, δ) − ∇ f (x)‖ =
√√√√

n∑

i=1

(
1

2δ
(f (x + δei) − f (x − δei)) − ∂ f

∂xi
(x)

)2

≤ L
√

nδ

2
,

which brings us to (3.6) and thus justifies (i).
Assertion (ii) follows directly from (i). To verify (iii), pick some
 > 0 and a

bounded set� ⊂ IRn , and then find r > 0 such that� ⊂ rB. Defining� := (r +
)B,
it is clear that� is compact. Since∇ f is locally Lipschitzian, it is Lipschitz continuous
on � with some constant L > 0. Taking any (x, δ) ∈ � × (0,
], we get that
B(x, δ) ⊂ �, and thus ∇ f is Lipschitz continuous on B(x, δ) with the same constant
L . Employing finally (i) justifies assertion (iii). ��
The following example shows that when the local Lipschitz continuity of ∇ f is
replaced by merely the continuity of ∇ f , the finite differences may not be a local
approximation of ∇ f .

Example 1 Define the univariate real-valued function f by

f (x) :=
{

2
3

√
x3 if x ≥ 0,

− 2
3

√−x3 if x < 0.

The derivative of f is calculated by

∇ f (x) =
{√

x if x ≥ 0,√−x if x < 0

being clearly continuous on IR while not Lipschitz continuous around 0. If we suppose
that G(x, δ) is the forward finite difference approximation of ∇ f (x) from (3.4), we
get that

G(0, δ) = f (δ) − f (0)

δ
=

2
3

√
δ3

δ
= 2

√
δ

3
for all δ > 0,

which implies that G(0, δ)/δ → ∞ as δ ↓ 0. It follows from (3.3) that G(x, δ) is not
a local approximation of the derivative ∇ f . Supposing now that G(x, δ) is the central
finite difference approximation of ∇ f (x), we deduce from (3.5) the expression

G(0, δ) = f (δ) − f (−δ)

2δ
= 4

√
δ

3
for all δ > 0,

which also tells us that G(x, δ) is not a local approximation of ∇ f .

123

P. D. Khanh et al.

4 General derivative-freemethods for C1,1
L functions

This section addresses the optimization problem (1.1) when f ∈ C1,1L for some L > 0.
By employing gradient approximation methods that satisfy the global error bound
(3.1), we propose the general derivative-free method with constant stepsize (DFC)
to solve this problem for both noiseless and noisy cases, providing its convergence
analysis. The DFC algorithm is described as follows.

4.1 Algorithm Construction

Algorithm 1 (DFC).

Step 0. Choose a global approximation G of ∇ f under condition (3.1). Select an
initial point x1 ∈ IRn, an initial sampling radius δ1 > 0, a constant C1 > 0, a
reduction factor θ ∈ (0, 1), and scaling factors μ > 2, η > 1, κ > 0. Set k := 1.

Step 1 (approximate gradient). Find gk and the smallest nonnegative integer ik such
that

gk = G(xk, θ ik δk) and
∥∥∥gk

∥∥∥ > μCkθ
ik δk .

Then set δk+1 := θ ik δk .

Step 2 (update). If f
(

xk − κ

Ck
gk
)

≤ f (xk) − κ(μ − 2)

2Ckμ

∥∥gk
∥∥2, then xk+1 :=

xk − κ

Ck
gk and Ck+1 := Ck . Otherwise, xk+1 := xk and Ck+1 := ηCk .

Remark 4.1 Let us present some observations concerning Algorithm 1. The first obser-
vation clarifies the existence of gk and ik in Step 1. Observation (ii) explains the
iteration updates in Step 2 while observation (iii) interprets the term “constant step-
size” in the name of our method.

(i) The procedure of finding gk and ik that satisfy Step 1 can be given as follows.
Set ik := 0 and

gk := G(xk, θ ik δk). (4.1)

While
∥∥gk

∥∥ ≤ μCkθ
ik δk , increase ik by 1 and recalculate gk under (4.1). When

∇ f (xk) �= 0, the existence of gk and ik in Step 1 is guaranteed. Indeed, otherwise we
get a sequence

{
gk

i

}
with

gk
i = G(xk, θ iδk) and

∥∥∥gk
i

∥∥∥ ≤ μθ iδk for all i ∈ IN. (4.2)

123

Globally convergent derivative-free…

Since θ ∈ (0, 1), the latter means that gk
i → 0 as i → ∞. Remembering that G is a

global approximation of ∇ f , we get for C > 0 given in (3.1) that

∥∥∥gk
i − ∇ f (xk)

∥∥∥ ≤ Cθ iδk whenever i ∈ IN.

Letting i → ∞ with taking into account that gk
i → 0, the latter inequality implies

that ∇ f (xk) = 0, which is a contradiction.

(ii)The condition f (xk−C−1
k κgk) ≤ f (xk)−κ(μ − 2)

2Ckμ

∥∥gk
∥∥2 determineswhether

Ck is a good approximation for C in the sense that the objective function f is suffi-
ciently decreasing when the iterate moves from xk to xk+1 := xk − C−1

k κgk . If this
condition fails, we increase Ck by setting Ck+1 := ηCk to get a better approximation
for C and stagnate the iterative sequence by setting xk+1 := xk .

(iii) It will be shown in Proposition 4.2 that there exists a positive number C̄ such
thatCk = C̄ for sufficiently large k ∈ IN,which also implies that xk+1 = xk −κC̄−1gk

for such k. This explains the term “constant stepsize” in the name of our algorithm.
(iv) The constant κ is a positive scaling factor that can be chosen arbitrarily. How-

ever, to ensure a good performance when finite difference approximations are used, κ

is usually chosen as
√

n
2 . In this case, by defining Lk := Ck

κ
, the stepsize κ

Ck
, as intro-

duced in Step 2 above, becomes 1
Lk
, which is near the optimal stepsize in gradient

descent if Lk is sufficiently close to the Lipschitz constant L of ∇ f .
On the other hand, the constant μ > 2 represents the relative error threshold for

gradient approximation. This is evident from the fact that if Ck ≥ C , it follows from
Step 1 and estimate (3.1) that we have

∥∥gk − ∇ f (xk)
∥∥ ≤ 1

μ

∥∥gk
∥∥.

4.2 Analysis for noiseless functions

In this subsection, we derive convergence properties of DFC in Algorithm 2 for noise-
less functions, i.e., when f (x) is available for all x ∈ IRn . Our analysis begins with a
crucial result showing that the tail of the sequence {Ck} generated by Algorithm 1 is
constant.

Proposition 4.2 Let {Ck} be the sequence generated by Algorithm 1. Assume that
∇ f (xk) �= 0 for all k ∈ IN. Then there exists a number N ∈ IN such that Ck+1 = Ck

whenever k ≥ N.

Proof Since G is a global approximation of ∇ f under condition (3.1), there exists
C > 0 such that

‖G(x, δ) − ∇ f (x)‖ ≤ Cδ for all (x, δ) ∈ IRn × (0,∞). (4.3)

By the imposed assumption, we find L > 0 such that ∇ f is Lipschitz continuous
with the constant L on IRn . Arguing by contradiction, suppose that the number N
asserted in the proposition does not exist. By Step 2 of Algorithm 1, this implies that
Ck+1 = ηCk for infinitely many k ∈ IN, and hence Ck → ∞ as k → ∞. Therefore,

123

P. D. Khanh et al.

there exists a number K ∈ IN such that CK+1 = ηCK and CK > max {C, Lκ}. Using
Step 2 of Algorithm 1 together with the update CK+1 = ηCK , we deduce that

f
(

x K − κ

CK
gK

)
> f (x K) − κ(μ − 2)

2CK μ

∥∥∥gK
∥∥∥
2
. (4.4)

Combining gK = G(x K , δK+1) and
∥∥gK

∥∥ ≥ μCK δK+1 from Step 1 of Algorithm 1
with (4.3) and CK > C as above, we get the relationships

∥∥∥gK − ∇ f (x K)

∥∥∥ =
∥∥∥G(x K , δK+1) − ∇ f (x K)

∥∥∥

≤ CδK+1 ≤ CK δK+1 ≤ μ−1
∥∥∥gK

∥∥∥ .

By the Cauchy-Schwarz inequality, the latter tells us that

〈
∇ f (x K), gK

〉
=
〈
∇ f (x K) − gK , gK

〉
+
∥∥∥gK

∥∥∥
2

≥ −
∥∥∥∇ f (x K) − gK

∥∥∥ ·
∥∥∥gK

∥∥∥+
∥∥∥gK

∥∥∥
2

≥ (1 − μ−1)

∥∥∥gK
∥∥∥
2
.

Combining thiswithLemma2.1 and taking into account the globalLipschitz continuity
of ∇ f with the constant L as well as the condition CK > Lκ as above, we get that

f
(

x K − κ

CK
gK

)
− f (x K) ≤ − κ

CK

〈
∇ f (x K), gK

〉
+ L

2

∥∥∥∥
κ

CK
gK

∥∥∥∥

2

≤ − κ

CK

(
1 − 1

μ

) ∥∥∥gK
∥∥∥
2 + κ

2CK

∥∥∥gK
∥∥∥
2

= − κ

CK

∥∥∥gK
∥∥∥
2 (1

2
− 1

μ

)
= −κ(μ − 2)

2CK μ

∥∥∥gK
∥∥∥
2
,

which clearly contradicts (4.4) and thus completes the proof of the proposition. ��
Now we are ready to establish the convergence properties of Algorithm 1 in the

noiseless case.

Theorem 4.3 Let
{

xk
}

be the sequence generated by Algorithm 1 and assume that
∇ f (xk) �= 0 for all k ∈ IN. Then either f (xk) → −∞ as k → ∞, or we have the
assertions:

(i) The gradient sequence
{∇ f (xk)

}
converges to 0 as k → ∞.

(ii) If f satisfies the KL property at some accumulation point x̄ of
{

xk
}
, then xk → x̄

as k → ∞.
(iii) If f satisfies the KL property at some accumulation point x̄ of

{
xk
}

with
ψ(t) = Mtq for M > 0 and q ∈ [1/2, 1), then the following convergence rates are
guaranteed for

{
xk
}
:

123

Globally convergent derivative-free…

• If q = 1/2, then
{

xk
}
,
{∇ f (xk)

}
, and

{
f (xk)

}
converge linearly to x̄ , 0, and

f (x̄), respectively.
• The setting of q ∈ (1/2, 1) ensures the estimates

∥∥∥xk − x̄
∥∥∥ = O

(
k− 1−q

2q−1

)
,

∥∥∥∇ f (xk)

∥∥∥ = O
(

k− 1−q
2q−1

)
, and f (xk)− f (x̄) = O

(
k− 2−2q

2q−1

)
.

Proof Since G is a global approximation of ∇ f under condition (3.1), there exists
C > 0 such that

‖G(x, δ) − ∇ f (x)‖ ≤ Cδ for all (x, δ) ∈ IRn × (0,∞). (4.5)

By f ∈ C1,1L , we find L > 0 such that the gradientmapping∇ f is Lipschitz continuous
with the constant L on IRn . Taking the number N ∈ IN from Proposition 4.2 ensures
that Ck = CN for all k ≥ N . This implies by Step 2 of Algorithm 1 that

f (xk+1) = f
(

xk − κ

CN
gk
)

≤ f (xk) − κ(μ − 2)

2CN μ

∥∥∥gk
∥∥∥
2

for all k ≥ N , (4.6)

which tells us that
{

f (xk)
}

k≥N is decreasing. If f (xk) → −∞, there is nothing to

prove, so we assume that f (xk) � −∞, which implies that
{

f (xk)
}
is convergent.

As a consequence, we get f (xk) − f (xk+1) → 0 as k → ∞. Then (4.6) tells us that
gk → 0. From Step 1 of Algorithm 1 it follows that

∥∥∥gk
∥∥∥ > μCkδk+1 = μCN δk+1 for all k ≥ N (4.7)

ensuring that δk+1 ↓ 0 as k → ∞. It further follows from gk = G(xk, δk+1) and (4.5)
that

∥∥∥gk − ∇ f (xk)

∥∥∥ =
∥∥∥G(xk, δk+1) − ∇ f (xk)

∥∥∥ ≤ Cδk+1 for all k ∈ IN, (4.8)

which yields ∇ f (xk) → 0 as k → ∞ and thus justifies (i).
To verify (ii), take any accumulation point x̄ of

{
xk
}
and assume that f satisfies

the KL property at x̄ . By (4.7) and (4.8), we obtain that

∥∥∇ f (xk)
∥∥ ≤ ∥∥gk

∥∥+ ∥∥∇ f (xk) − gk
∥∥ ≤ ∥∥gk

∥∥+ Cδk+1

≤ ∥∥gk
∥∥+ C

∥∥gk
∥∥

μCN
= α

∥∥gk
∥∥ for all k ≥ N ,

where α := μCN +C
μCN

. This together with (4.6) brings us to condition (2.6). By

Remark 2.8(i), assumptions (H1) and (H2) in Proposition 2.6 hold. Therefore, xk → x̄
as k → ∞, which justifies (ii).

To proceed with the proof of assertion (iii) under the KL property at x̄ with
ψ(t) = Mtq , we use the iterations xk+1 = xk − C−1κgk as in Step 2 of Algo-
rithm 1 together with ‖gk‖ > 0 from Step 1 of Algorithm 1. This gives us xk+1 �= xk

123

P. D. Khanh et al.

for k ≥ N . Combining the latter with (4.6) and (4.9), we see that all the assumptions
in Proposition 2.7 are satisfied. This verifies the convergence rates of

{
xk
}
to x̄ stated

in (iii). Since x̄ is an accumulation point of
{

xk
}
, it follows from (i) that x̄ is a station-

ary point of f , i.e., ∇ f (x̄) = 0. Hence the usage of Lemma 2.1 and the decreasing
property of

{
f (xk)

}
k≥N yields

0 ≤ f (xk) − f (x̄) ≤
〈
∇ f (x̄), xk − x̄

〉
+ L

2

∥∥∥xk − x̄
∥∥∥
2 = L

2

∥∥∥xk − x̄
∥∥∥
2
,

which justifies the convergence rates of
{

f (xk)
}
to f (x̄) as asserted in (iii).

It remains to verify the convergence rates for
{∇ f (xk)

}
. Since∇ f is Lipschitz con-

tinuous with the constant L > 0, the claimed property follows from the convergence
rates for

{
xk
}
due to

∥∥∥∇ f (xk)

∥∥∥ =
∥∥∥∇ f (xk) − ∇ f (x̄)

∥∥∥ ≤ L
∥∥∥xk − x̄

∥∥∥ .

This therefore completes the proof of the theorem. ��
Remark 4.4 Here we present a comparison between our analysis for DFC with the
analysis in [14]. While both [14] and our paper address the noiseless case and [14]
considers a more general approach, our analysis provides additional developments
that are not studied in [14]. Specifically:

(i) Our DFC method (Algorithm 1) explicitly specifies how to construct the gra-
dient approximation. In contrast, [14, Algorithm 3.1] assumes a more general
construction and requires the gradient approximation to be sufficiently accurate
(as per [14, Assumption 3.1]). In order to make the gradient approximation in
DFC satisfying [14, Assumption 3.1], the constant Ck should be larger than C ,
which is not required in and not ensured by our analysis. Furthermore, the finite
difference interval and the stepsize are interacting with each other in our DFC
method, while they are considered separately in [14, Algorithm 3.1].

(ii) Additionally, [14, Algorithm 3.1] employs a different rule for choosing stepsize,
allowing it to increase after each iteration, while ourDFCdoes not allow this. The
numerical experiments in Subsection 6.1.1 demonstrate that this small change
significantly affects the numerical performance of the methods with a more
favorable result for DFC.

(iii) Apart from the differences in algorithmic constructions, our analysis takes a
distinct direction by demonstrating the convergence of the gradient sequence to
0 and the convergence of the sequence of iterates to a stationary point. On the
other hand, [14, Theorem 3.1] reveals the number of iterations required to reach
a near-stationary point, and it also establishes that lim infk→∞

∥∥∇ f (xk)
∥∥ = 0.

4.3 Analysis for noisy functions

In this part, we provide the convergence analysis with error bounds for DFC in
Algorithm 1 addressing problem (1.1) when only a noisy approximation φ(x) =

123

Globally convergent derivative-free…

f (x) + ξ(x) of f is available, where ξ : IRn → IR is a noise function bounded by
some constant ξ f > 0, i.e.,

|ξ(x)| ≤ ξ f for all x ∈ IRn . (4.9)

Due to the design of DFC, we do not assume that ξ f is known. For brevity, consider
only the forward finite difference approximation, while other gradient approximation
methods can be employed via modifications of the inexact conditions in Definition 3.1
for noisy functions.We first construct the gradient approximation for f via the forward
finite difference with the noisy function φ defined by

G̃(x, δ) := 1

δ

n∑

i=1

(
φ(x + δei) − φ(x)

)
ei for any (x, δ) ∈ IRn × (0,∞). (4.10)

Recall the following noisy version of Proposition 3.4, which is well known and can
be found in, e.g., [7, Theorem 2.1].

Proposition 4.5 Let f : IRn → IR be a C1,1L function. Then the noisy forward finite
difference (4.10) satisfies the error bound

∥∥G̃(x, δ) − ∇ f (x)
∥∥ ≤ L

√
nδ

2
+ 2

√
nξ f

δ
for all δ > 0. (4.11)

For a better exposition, consider DFC with specific parameters μ = 4 and κ =
√

n
2 ,

although other general selections ofμ > 2 and κ > 0 still workwith the same analysis.
We also define Lk := Ck

κ
for each k ∈ N as approximate Lipschitz constants. In order

to deal with noise, a relaxation is required in the descent condition in Step 2 of DFC,
which leads us to the following algorithm.

Algorithm 2 (DFC for noisy functions).

Step 0 (initialization). Select some x1 ∈ IRn, δ1 > 0, L1 > 0, θ ∈ (0, 1), and
η > 1.

Step 1 (approximate gradient). Find gk and the smallest nonnegative integer ik such
that

gk = G̃(xk, θ ik δk) and
∥∥∥gk

∥∥∥ > 2Lk
√

nθ ik δk . (4.12)

Then set δk+1 := θ ik δk .

Step 2 (update). Ifφ
(

xk − 1

Lk
gk
)

≤ φ(xk)− 1

24Lk

∥∥gk
∥∥2, then xk+1 := xk − 1

Lk
gk

and Lk+1 := Lk . Otherwise, xk+1 := xk and Lk+1 := ηLk .

123

P. D. Khanh et al.

In the following remark, we present general ideas for the construction of Algo-
rithm 2 and discuss the main differences between DFC and derivative-free trust-region
methods presented in [17, Section 10.3].

Remark 4.6 (i) (General ideas) The ideas for the construction of DFC are as follows.
Firstly, since the noise is only bounded and may not vanish, we may not make
any improvement if the kth iterate xk is sufficiently close to the optimal solutions.
However, if xk is far from the optimal solutions, we can expect its function value
f (xk) to be sufficiently larger than the noise. In this case, the total error for
approximating the gradient is dominated by the truncated one, i.e.,

∥∥∥gk − ∇ f (xk)

∥∥∥ ≤ L
√

nδ

2
+ 2

√
nξ f

δ
≈ L

√
nδ

2
for δ > 0. (4.13)

Next we try to find the largest finite difference interval δk+1 such that the corre-
sponding approximation is acceptable in the sense that

∥∥∥gk − ∇ f (xk)

∥∥∥ ≤ 1

4

∥∥∥gk
∥∥∥ , gk = G̃(xk, δk+1),

which ensures a sufficient decrease of the function f when moving towards the
direction−gk . Note that another condition that makes the≈ sign in (4.13) reliable
is that δ should be sufficiently large; otherwise, the roundoff error becomes dom-
inant again. This is where the smallest property of ik plays an important role and
motivates us to consider construction (4.12) in Step 1. The reasons behind using
Lk to approximate L in Step 2 are exactly the same as using Ck to approximate C
discussed in Remark 4.1 for the noiseless case.

(ii) (Comparison with trust-region algorithms) In contrast to the derivative-free
trust-region algorithms presented in [17, Section 10.3],we do not construct approx-
imation models. Instead, we directly use the finite-difference gradient as the
descent direction and move along the latter. Additionally, the accuracy of the
approximate gradient and the stepsize in DFC are updated in separate steps, in
contrast to the fact that these updates are combined into the trust-region radius in
the methods described in [17, Section 10.3].

Now we start deriving fundamental properties of Algorithm 2 that are essential
for the convergence analysis. Due to the presence of noise, there is no guarantee that
Step 1 in Algorithm 2 will terminate after a finite number of trials for ik . Therefore,
we say that Step 1 is successful if such ik is found, and is unsuccessful otherwise.

Note that the minimum of the right-hand side of (4.11) is achieved when δ =
√

4ξ f
L ,

which we regard as the (unknown) optimal finite difference interval. Given this, we
begin our analysis with a result that guarantees the success of Step 1 in Algorithm 2
provided that the gradient of the current iterate is not close to 0, that the finite difference
interval above is the optimal threshold, and that the approximate Lipschitz constant is
sufficiently small.

123

Globally convergent derivative-free…

Proposition 4.7 At the kth iteration of Algorithm 2, if the conditions

∥∥∥∇ f (xk)

∥∥∥ ≥ (4θ−1η + θ−1 + 1)
√

Lnξ f , δk ≥
√
4ξ f

L
, Lk < ηL

are satisfied, then Step 1 is successful with δk+1 ≥
√

4ξ f
L .

Proof Let i := �logθ

(
1
δk

√
4ξ f
L

)
�, where �·� stands for the floor/greatest integer func-

tion. Since we have δk ≥
√

4ξ f
L and θ ∈ (0, 1), the number i is a nonnegative integer

satisfying the inclusion

i ∈
(

logθ

(
1

δk

√
4ξ f

L

)

− 1, logθ

(
1

δk

√
4ξ f

L

)]

while implying in turn that θ iδk ∈
[√

4ξ f
L , θ−1

√
4ξ f
L

)
. We now show that inequality

(4.12) in Step 1 of Algorithm 2 is satisfied for ik = i, which yields the success of

the step with δk+1 ≥ θ iδk ≥
√

4ξ f
L . Indeed, with gk

i := G̃(xk, θ iδk), the error bound

(4.11) and θ iδk ∈
[√

4ξ f
L , θ−1

√
4ξ f
L

)
tell us that

∥∥∥gk
i − ∇ f (xk)

∥∥∥ ≤ L
√

n

2
θ iδk + 2

√
nξ f

θ iδk

≤ θ−1
√

Lnξ f +√
Lnξ f = (1 + θ−1)

√
Lnξ f .

Since
∥∥∇ f (xk)

∥∥ ≥ (4θ−1η + θ−1 + 1)
√

Lnξ f and Lk < ηL, we get that

∥∥∥gk
i

∥∥∥ ≥
∥∥∥∇ f (xk)

∥∥∥−
∥∥∥gk

i − ∇ f (xk)

∥∥∥ ≥ 4θ−1η
√

Lnξ f = 2ηL
√

nθ−1

√
4ξ f

L

> 2Lk
√

nθ iδk .

Therefore, Step 1 of Algorithm 2 is successful with δk+1 ≥ θ iδk ≥
√

4ξ f
L . ��

Proposition 4.8 At the kth iteration of Algorithm 2, suppose that
∥∥∇ f (xk)

∥∥ ≥
16
√

Lnξ f and that Step 1 is successful with δk+1 ≥
√

4ξ f
L . The following assertions

hold:

(i)
∥∥gk − ∇ f (xk)

∥∥ ≤ 4L+Lk
15Lk

∥∥gk
∥∥.

(ii) If in addition Lk ≥ L, then
〈∇ f (xk), gk

〉 ≥ 2
3

∥∥gk
∥∥2 and

∥∥∇ f (xk)
∥∥ ≤ 4

3

∥∥gk
∥∥.

(iii) If in addition Lk < ηL, then Lk+1 < ηL.

123

P. D. Khanh et al.

Proof (i) Since Step 1 of Algorithm 2 is successful, we deduce that
∥∥gk

∥∥ ≥
2Lk

√
nδk+1. Combining this with gk = G̃(xk, δk+1), (4.11), and the estimates

δk+1 ≥
√

4ξ f
L ,

∥∥∇ f (xk)
∥∥ ≥ 16

√
Lnξ f brings us to

∥∥∥gk − ∇ f (xk)

∥∥∥ ≤ L
√

n

2
δk+1 + 2

√
nξ f

δk+1

≤ L
√

n

2

∥∥gk
∥∥

2Lk
√

n
+√

Lnξ f

≤ L

4Lk

∥∥∥gk
∥∥∥+ 1

16

∥∥∥∇ f (xk)

∥∥∥

≤ L

4Lk

∥∥∥gk
∥∥∥+ 1

16

∥∥∥gk
∥∥∥+ 1

16

∥∥∥gk − ∇ f (xk)

∥∥∥ .

The latter inequality yields
∥∥gk − ∇ f (xk)

∥∥ ≤ 4L+Lk
15Lk

∥∥gk
∥∥ , which verifies (i).

(ii) Using (i) and Lk ≥ L gives us
∥∥gk − ∇ f (xk)

∥∥ ≤ 1
3

∥∥gk
∥∥. Combining this

estimates with the Cauchy-Schwarz inequality, we arrive at

〈
∇ f (xk), gk

〉
≥
〈
∇ f (xk) − gk, gk

〉
+
∥∥∥gk

∥∥∥
2

≥ −
∥∥∥∇ f (xk) − gk

∥∥∥
∥∥∥gk

∥∥∥+
∥∥∥gk

∥∥∥
2 ≥ 2

3

∥∥∥gk
∥∥∥
2
.

In addition, it follows from
∥∥gk − ∇ f (xk)

∥∥ ≤ 1
3

∥∥gk
∥∥ that

∥∥∥gk
∥∥∥ ≥

∥∥∥∇ f (xk)

∥∥∥−
∥∥∥gk − ∇ f (xk)

∥∥∥ ≥
∥∥∥∇ f (xk)

∥∥∥− 1

3

∥∥∥gk
∥∥∥ ,

which justifies the claimed estimates
∥∥∇ f (xk)

∥∥ ≤ 4
3

∥∥gk
∥∥.

(iii) This assertion obviously holds if Lk+1 = Lk , so we consider the case where
Lk+1 = ηLk . Suppose on the contrary that Lk+1 ≥ ηL, which yields Lk ≥ L . Then

it follows from assertion (ii) that
〈∇ f (xk), gk

〉 ≥ 2
3

∥∥gk
∥∥2. Furthermore, Lemma 2.1

tells us that

f
(

xk − 1

Lk
gk
)

− f (xk) ≤ − 1

Lk

〈
∇ f (xk), gk

〉
+ L

2

∥∥∥∥
1

Lk
gk
∥∥∥∥

2

≤ − 1

Lk

2

3

∥∥∥gk
∥∥∥
2 + 1

2Lk

∥∥∥gk
∥∥∥
2 = − 1

6Lk

∥∥∥gk
∥∥∥
2
. (4.14)

123

Globally convergent derivative-free…

Since Step 1 is successful with δk+1 ≥
√

4ξ f
L and Lk ≥ L , we deduce that

∥∥∥gk
∥∥∥ > 2Lkδk+1 ≥ 2Lk

√
4ξ f

L
≥ 4

√
Lkξ f ,

which means that ξ f ≤ 1
16Lk

∥∥gk
∥∥2 . Combining the latter with (4.9) and (4.14) gives

us

φ
(

xk − 1

Lk
gk
)

− φ(xk) ≤ f
(

xk − 1

Lk
gk
)

− f (xk) + 2ξ f

≤ − 1

6Lk

∥∥∥gk
∥∥∥
2 + 1

8Lk

∥∥∥gk
∥∥∥
2 = − 1

24Lk

∥∥∥gk
∥∥∥
2
.

By Step 2 of Algorithm 2, it follows that Lk+1 = Lk , a contradiction, which justifies
Lk+1 < ηL . ��

In the propositions above, we can choose θ ∈ (0, 1) and η > 1 to get 4θ−1η +
θ−1 + 1 < 16 by taking, e.g., θ =

√
2
2 and η = 2. To simplify the presentation,

we make such a selection of parameters in the results below. Under this choice, the
following property of Algorithm 2 can be deduced immediately from Proposition 4.7
and Proposition 4.8(iii).

Proposition 4.9 Let
{

xk
}

be generated by Algorithm 2 with L1 < ηL and δ1 ≥
√

4ξ f
L .

If for some K ∈ IN we have
∥∥∇ f (xk)

∥∥ ≥ 16
√

Lnηξ f whenever k = 1, . . . , K , then

Step 1 is successful with δk+1 ≥
√

4ξ f
L and Lk+1 < ηL for all k = 1, . . . , K .

Now we are ready to establish the main convergence properties of Algorithm 2.

Theorem 4.10 Let
{

xk
}

be generated by Algorithm 2 with δ1 ≥
√

4ξ f
L and L1 < ηL.

Then the number N of iterations that Algorithm 2 takes until
∥∥∇ f (x N)

∥∥ < 16
√

Lnξ f

is bounded by

N ≤ Nopt := 1 +
⌊

f (x1) − f ∗ + 2ξ f

Mξ f

⌋
+
⌊
logη

(
ηL

L1

)⌋
, where

M := 150nL2
1

η(L + 4L1)2
and f ∗ := inf

x∈Rn
f (x) > −∞.

The total number Nfval of function evaluations needed to achieve this goal is bounded
by

Nfval ≤ (n + 2)Nopt + n

⌊

logθ

(
2
√

ξ f

δ1
√

L

)⌋

.

123

P. D. Khanh et al.

Proof If Step 1 is unsuccessful for the first time at K ≤ Nopt, then it follows from
Proposition 4.9 that

∥∥∇ f (x N)
∥∥ < 16

√
Lnξ f for some N ≤ K , which verifies the

claimed bound. Now we suppose that Step 1 is successful for all k = 1, . . . , Nopt and
assume on the contrary that

∥∥∥∇ f (xk)

∥∥∥ ≥ 16
√

Lnξ f for all k = 1, . . . , Nopt.

Proposition 4.9 tells us that δk+1 ≥
√

4ξ f
L and Lk+1 < ηL for all k = 1, . . . , Nopt,

and thus it follows from Proposition 4.8(i) and the construction of {Lk} that
∥∥∥gk − ∇ f (xk)

∥∥∥ ≤ 4L + Lk

15Lk

∥∥∥gk
∥∥∥ ≤ 4L + L1

15L1

∥∥∥gk
∥∥∥ .

This gives us in turn the estimates

16
√

Lnξ f ≤
∥∥∥∇ f (xk)

∥∥∥ ≤
∥∥∥gk

∥∥∥+
∥∥∥gk − ∇ f (xk)

∥∥∥ ≤ 4L + 16L1

15L1

∥∥∥gk
∥∥∥

for all k = 1, . . . , Nopt. (4.15)

Define I := {
k ∈ IN | 1 ≤ k ≤ Nopt, Lk+1 = Lk

}
and deduce from the construction

of {Lk} with Lk+1 < ηL as k = 1, . . . , Nopt that there are at most
⌊
logη

(
ηL
L1

)⌋

iterations for which Lk+1 = ηLk . This yields

|I | ≥ Nopt −
⌊
logη

(
ηL

L1

)⌋
= 1 +

⌊
f (x1) − f ∗ + 2ξ f

Mξ f

⌋
. (4.16)

Take any k = 1, . . . , Nopt. If k /∈ I , we get that φ(xk+1) = φ(xk). For any k ∈ I , it
follows from Step 2 of Algorithm 2, Lk < ηL and (4.15) that

φ(xk+1) − φ(xk) ≤ − 1

24Lk

∥∥∥gk
∥∥∥
2 ≤ − 1

24ηL

∥∥∥gk
∥∥∥
2 ≤ −Mξ f ,

where M is defined in the statement of the theorem. Since φ(xk) = φ(xk+1) when
k /∈ I , we have

f ∗ − ξ f ≤ φ(x Nopt+1) = φ(x1) +
Nopt∑

k=1

(φ(xk+1) − φ(xk)) ≤ f (x1) + ξ f − |I |Mξ f ,

which yields |I | ≤ f (x1)− f ∗+2ξ f
Mξ f

and thus contradicts (4.16).

123

Globally convergent derivative-free…

(iii) By (ii), at most Nopt iterations are needed to reach the near stationary point. For
each iteration of Algorithm 2, we need at least one approximate gradient evaluation gk

in Step 1. Since {δk} is nonincreasing with δ1 ≥ δk ≥
√

4ξ f
L , the number of additional

approximate gradient evaluations gk required to adjust the finite difference intervals

δk throughout all the iterations is at most

⌊
logθ

(
2
√

ξ f

δ1
√

L

)⌋
. Employing the forward

finite difference, we can reuse φ(xk) for additional gradient evaluations. This tells us
that the total number of function evaluations for determining the approximate gradient

gk is at most (n + 1)Nopt + n

⌊
logθ

(
2
√

ξ f

δ1
√

L

)⌋
. We also need one additional function

evaluation to check the descent condition in Step 2 of Algorithm 2 at each iteration,

which results in at most (n + 2)Nopt + n

⌊
logθ

(
2
√

ξ f

δ1
√

L

)⌋
total function evaluations.

��
Remark 4.11 Let us briefly discuss relationships between our analysis for DFC and
the analysis in [6]. First observe that the noise level is unknown for our DFC algo-
rithm, while it is required to be known for the analysis in [6] as mentioned after [6,
Assumption 1.3]. The algorithmic construction of [6, Algorithm 2.1] shares many
similarities with [14, Algorithm 3.1], and so it has some major differences with our
DFC as mentioned above in Remark 4.4(i,ii).

5 General derivative-freemethods for C1,1 functions

In this section, we consider problem (1.1), where f is of class C1,1 and develop new
derivative-free optimization methods in both cases of noiseless and noisy objective
functions.

5.1 Backtracking linesearch for noiseless functions

Here we propose and justify the novel derivative-free method with backtracking step-
size (DFB) to solve the optimization problem (1.1) in the noiseless setting. The main
result of this subsection establishes the global convergence with convergence rates of
the following algorithm, which employs gradient approximations satisfying the local
error bound estimate (3.2).

123

P. D. Khanh et al.

Algorithm 3 (DFB).

Step 0 (initialization). Choose a local approximation G of∇ f under condition (3.2).
Select an initial point x1 ∈ IRn and initial radius δ1 > 0, a constant C1 > 0, factors
θ ∈ (0, 1), μ > 2, η > 1, linesearch constants β ∈ (0, 1/2), γ ∈ (0, 1), τ̄ > 0,
and an initial bound tmin

1 ∈ (0, τ̄). Choose a sequence of manually controlled errors
{νk} ⊂ [0,∞) such that νk ↓ 0 as k → ∞. Set k := 1.

Step 1 (approximate gradient). Select gk and the smallest nonnegative integer ik so
that

gk = G(xk,min
{
θ ik δk, νk

})
and

∥∥∥gk
∥∥∥ > μCkθ

ik δk . (5.1)

Then set δk+1 := θ ik θk .

Step 2 (linesearch). Set the tentative stepsize tk := τ̄ . While

f (xk − tk gk) > f (xk) − βtk
∥∥∥gk

∥∥∥
2
and tk ≥ tmin

k , (5.2)

set tk := γ tk .

Step 3 (stepsize and parameters update). If tk ≥ tmin
k , then set τk := tk ,Ck+1 := Ck ,

and tmin
k+1 := tmin

k . Otherwise, set τk := 0, Ck+1 := ηCk , and tmin
k+1 := γ tmin

k .

Step 4 (iteration update). Set xk+1 := xk − τk gk . Increase k by 1 and go back to
Step 1.

Remark 5.1 (i) Fix any k ∈ IN. The procedure of finding gk and ik that satisfies Step 1
of Algorithm 3 can be described as follows. Set ik := 0 and calculate gk as

gk = G(xk,min{θ ik δk, νk}
)
. (5.3)

While
∥∥gk

∥∥ ≤ μCkθ
ik δk , increase ik by 1 and recalculate gk by formula (5.3). We

now show that when ∇ f (xk) �= 0, this procedure stops after a finite number of steps
giving us gk and ik as desired. Indeed, assuming on the contrary that the procedure
does not stop, we get a sequence of

{
gk

i

}
with

gk
i = G(xk,min

{
θ iδk, νk

})
and

∥∥∥gk
i

∥∥∥ ≤ μCkθ
iδk for all i ∈ IN. (5.4)

Since G is a local approximation of ∇ f , for any fixed
 > 0 condition (3.2) with
� = {

xk
}
ensures the existence of a positive number C such that

∥∥∥G(xk, δ) − ∇ f (xk)

∥∥∥ ≤ Cδ whenever 0 < δ ≤
. (5.5)

123

Globally convergent derivative-free…

By θ ∈ (0, 1), there is N ∈ IN with θ iδk ≤
 for all i ≥ N . Combining this with
(5.4) and (5.5) yields

∥∥∥gk
i − ∇ f (xk)

∥∥∥ ≤ Cθ iδk and
∥∥∥gk

i

∥∥∥ ≤ μCkθ
iδk for all i ≥ N .

Letting i → ∞, we arrive at ∇ f (xk) = 0, which is a contradiction.
(ii) It follows directly from the construction of δk in Step 1 of Algorithm 3 that

gk = G(xk,min {δk+1, νk}
)
and

∥∥∥gk
∥∥∥ > μCkδk+1. (5.6)

To proceed further with the convergence analysis of Algorithm 3, we obtain two
results of their independent interest. The first one reveals some uniformity of general
linesearch procedures with respect to the selections of reference points, stepsizes, and
directions.

Lemma 5.2 Let f : IRn → IR be a function with a locally Lipschitz continuous
gradient, and let β ∈ (0, 1/2). Then for any nonempty bounded set � ⊂ IRn, there
exists t̄ > 0 such that

f (x − tg) ≤ f (x) − βt ‖g‖2 whenever x ∈ �, 2 ‖g − ∇ f (x)‖ ≤ ‖g‖ ,

and t ∈ (0, t̄].

Proof The boundedness of � gives us r > 0 such that � ⊂ rB. Using the continuity

of ∇ f and the compactness of rB, define r ′ := max
{
‖∇ f (x)‖ | x ∈ rB

}
. Since

f ∈ C1,1, there exists L > 0 such that∇ f is Lipschitz continuous with the constant L
on� := (r +2r ′)B. By β < 1/2, we find t̄ > 0 with t̄ < min

{
1, L−1(1 − 2β)

}
. Now

take some x ∈ � ⊂ � and g ∈ IRn such that 2 ‖g − ∇ f (x)‖ ≤ ‖g‖ and t ∈ (0, t̄].
The choice of g gives us by the Cauchy-Schwarz inequality that

〈∇ f (x), g〉 = 〈∇ f (x) − g, g〉 + ‖g‖2 ≥ −‖∇ f (x) − g‖ ‖g‖ + ‖g‖2
≥ − 1

2 ‖g‖2 + ‖g‖2 = 1
2 ‖g‖2 ,

(5.7)

and by using the triangle inequality that

‖∇ f (x)‖ ≥ ‖g‖ − ‖g − ∇ f (x)‖ ≥ 1
2 ‖g‖ .

Combining the latter with the choice of t, t̄ , x ∈ � ⊂ rB and the construction of r ′
yields

t ‖g‖ ≤ t̄ ‖g‖ ≤ 2t̄ ‖∇ f (x)‖ ≤ 2t̄r ′ < 2r ′,

which ensures that x − tg ∈ �. The convexity of� tells us that the entire line segment
[x, x − tg] lies on�. Remembering that∇ f is Lipschitz continuous with the constant

123

P. D. Khanh et al.

L on �, we employ Lemma 2.1 by taking into account that t ≤ t̄ < L−1(1− 2β) and
that (5.7). This gives us

f (x − tg) − f (x) ≤ 〈x − tg − x,∇ f (x)〉 + L

2
‖x − tg − x‖2

= −t 〈g,∇ f (x)〉 + Lt2

2
‖g‖2 ≤ − t

2
‖g‖2 + Lt2

2
‖g‖2

= −βt ‖g‖2 + t ‖g‖2 2β − 1 + Lt

2
≤ −βt ‖g‖2

and thus completes the proof of the lemma. ��
Employing the obtained lemma, we derive the next result showing that unless the

stationary point is found, Algorithm 3 always makes a progress after a finite number
of iterations.

Proposition 5.3 Let
{

xk
}

and {τk} be the sequences generated by Algorithm 3, and
let K ∈ IN be such that ∇ f (x K) �= 0. Then we can choose a number N ≥ K so that
τN > 0.

Proof Assume on the contrary that τk = 0 for all k ≥ K . Steps 3 and 4 of Algorithm 3
give us

tmin
k+1 = γ tmin

k and xk = x K for all k ≥ K . (5.8)

Therefore, ∇ f (xk) = ∇ f (x K) �= 0 for all k ≥ K , which implies that gk and ik in
Step 1 of Algorithm 3 exist for all k ≥ K . Since G is a local approximation of ∇ f , for
any fixed
 > 0 condition (3.2) with � = {

x K
}
ensures the existence of C > 0 with

∥∥∥G(x K , δ) − ∇ f (x K)

∥∥∥ ≤ Cδ whenever 0 < δ ≤
. (5.9)

It follows from Lemma 5.2 with � = {
x K

}
that there exists some t̄ > 0 such that

f (x K − tg) ≤ f (x K) − βt ‖g‖2 whenever 2
∥∥∥g − ∇ f (x K)

∥∥∥ ≤ ‖g‖
and t ∈ (0, t̄]. (5.10)

Using νk ↓ 0, tmin
k ↓ 0, ∇ f (x K) �= 0, and (5.8) gives us N ≥ K for which

νN < min
{

, 1

3C

∥∥∇ f (x K)
∥∥} and tmin

N < γ t̄ . Then we get from (5.9) with taking
into account x N = x K that

∥∥∥G(x N ,min {δN+1, νN })−∇ f (x N)

∥∥∥≤C min {δN+1, νN } ≤CνN ≤1

3

∥∥∥∇ f (x N)

∥∥∥ .

Combining this with gN = G(x N ,min {δN+1, νN }) from (5.6) provides the estimate

∥∥∥gN − ∇ f (x N)

∥∥∥ ≤ 1

3

∥∥∥∇ f (x N)

∥∥∥ ,

123

Globally convergent derivative-free…

which implies by the triangle inequality that

∥∥∥gN
∥∥∥ ≥

∥∥∥∇ f (x N)

∥∥∥−
∥∥∥gN − ∇ f (x N)

∥∥∥ ≥ 2
∥∥∥gN − ∇ f (x N)

∥∥∥ .

Employing the latter together with (5.10) and x N = x K yields

f (x N − tgN) ≤ f (x N) − βt
∥∥∥gN

∥∥∥
2
for all t ∈ (0, t̄]. (5.11)

It follows from (5.11) and the choice of parameters that

max
{
t
∣∣ f (x N − tgN) ≤ f (x N) − βt

∥∥∥gN
∥∥∥
2
, t = τ̄ , τ̄ γ, τ̄ γ 2, . . .

}
> γ t̄ > tmin

N ,

which implies in turn by Step 2 of Algorithm 3 that

tN = max
{
t
∣∣ f (x N − tgN) ≤ f (x N) − βt

∥∥∥gN
∥∥∥
2
, t = τ̄ , τ̄ γ, τ̄ γ 2, . . .

}
> tmin

N .

By Step 3 of Algorithm 3, we conclude that τN = tN > 0, a contradiction completing
the proof. ��
Now we are ready the establish the convergence properties of Algorithm 3.

Theorem 5.4 Let
{

xk
}

be the sequence generated by Algorithm 3 and assume that
∇ f (xk) �= 0 for all k ∈ IN. Then either f (xk) → −∞ as k → ∞, or the following
assertions hold:

(i) Every accumulation point of
{

xk
}

is a stationary point of f .
(ii) If the sequence

{
xk
}

is bounded, then the set of accumulation points of
{

xk
}

is
nonempty, compact, and connected in IRn.

(iii) If
{

xk
}

has an isolated accumulation point x̄ , then this sequence converges to
x̄ .

Proof First it follows from Steps 2 and 3 of Algorithm 3 that

βτk

∥∥∥gk
∥∥∥
2 ≤ f (xk) − f (xk+1) for all k ∈ IN, (5.12)

which tells us that
{

f (xk)
}
is nonincreasing. If f (xk) → −∞, there is nothing

to prove; so we assume that f (xk) � −∞, which implies by the nonincreasing
property of

{
f (xk)

}
that inf f (xk) > −∞. Summing up the inequalities in (5.12)

over k = 1, 2, . . . with taking into account that xk+1 = xk − τk gk from the update in
Step 3 of Algorithm 3 gives us

∞∑

k=1

τk

∥∥∥gk
∥∥∥
2

< ∞ and
∞∑

k=1

∥∥∥gk
∥∥∥ ·

∥∥∥xk+1 − xk
∥∥∥ < ∞. (5.13)

123

P. D. Khanh et al.

We divide the proof of (i) into two parts by showing first that the origin is an
accumulation point of

{
gk
}
and then employing Lemma 2.2 to establish stationarity

of all the accumulation points of
{

xk
}
.

Claim 1 The origin 0 ∈ IRn is an accumulation point of the sequence
{
gk
}
.

Arguing by contradiction, suppose that there are numbers ε > 0 and K ∈ IN such that

∥∥∥gk
∥∥∥ ≥ ε for all k ≥ K . (5.14)

Combining this with (5.13) gives us τk ↓ 0 and
∑∞

k=1

∥∥xk+1 − xk
∥∥ < ∞. The latter

implies that
{

xk
}
converges to some x̄ ∈ IRn . By taking a larger K , we can assume

that τk < τ̄ for all k ≥ K . Let N be the set of all k ∈ IN such that τk > 0. It follows
from Proposition 5.3 that N is infinite. Hence we can take any k ≥ K with k ∈ N
and get that τk ∈ (0, τ̄). Step 3 of Algorithm 3 ensures that τk = tk ∈ [tmin

k , τ̄). Fixing
such an index k, we get from the exit condition in Step 2 of Algorithm 3 that

−γ −1βτk

∥∥∥gk
∥∥∥
2

< f (xk − γ −1τk gk) − f (xk). (5.15)

The classical mean value theorem gives us x̃ k ∈ [xk, xk − γ −1τk gk] such that

f (xk − γ −1τk gk) − f (xk) = −γ −1τk

〈
gk,∇ f (̃xk)

〉
. (5.16)

Combining this with (5.15) yields

−γ −1βτk

∥∥∥gk
∥∥∥
2

< −γ −1τk

〈
gk,∇ f (̃xk)

〉
,

which implies by dividing both sides of the inequality by −γ −1τk < 0 that

〈
gk,∇ f (̃xk)

〉
< β

∥∥∥gk
∥∥∥
2

for all k ≥ K , k ∈ N . (5.17)

Take some neighborhood � of x̄ and
 > 0. Since G is a local approximation of ∇ f
under condition (3.2), there exists C > 0 such that

‖G(x, δ) − ∇ f (x)‖ ≤ Cδ whenever 0 < δ ≤
 and x ∈ �. (5.18)

Since νk ↓ 0 and xk → x̄ , by taking a larger K we can assume that νk <
 and
xk ∈ � for all k ≥ K . Using this together with (5.18) and gk = G(xk,min {δk+1, νk})
in (5.6) tells us that

∥∥∥gk − ∇ f (xk)

∥∥∥ =
∥∥∥G(xk,min {δk+1, νk}) − ∇ f (xk)

∥∥∥ ≤ C min {δk+1, νk} ≤ Cνk .

123

Globally convergent derivative-free…

Combining the latter with xk → x̄ , νk ↓ 0 as k → ∞, and the continuity of ∇ f gives
us

gk → ∇ f (x̄) as k → ∞, (5.19)

which yields ‖∇ f (x̄)‖ > 0 by (5.14). It follows from (5.19), τk ↓ 0, xk → x̄ , and

x̃ k ∈ [xk, xk − γ −1τk gk] for all k ≥ K with k ∈ N that x̃ k N→ x̄ . Letting k
N→ ∞

in (5.17) and taking into account the convergence above and (5.19) bring us to the
estimate

‖∇ f (x̄)‖2 ≤ β ‖∇ f (x̄)‖2 .

This contradicts β < 1
2 and ‖∇ f (x̄)‖ > 0. Thus the origin is an accumulation point

of
{
gk
}
as claimed.

Claim 2 Every accumulation point of
{

xk
}

is a stationary point of f .

Pick any accumulation point x̄ of
{

xk
}
. Using Claim 1, the second inequality in (5.13),

and Lemma 2.2 tells us that there exists an infinite set J ⊂ IN such that

xk J→ x̄ and gk J→ 0.

Take a neighborhood� of x̄ and
 > 0. Since G is a local approximation of∇ f under
condition (3.2), there exists C > 0 for which

‖G(x, δ) − ∇ f (x)‖ ≤ Cδ whenever 0 < δ ≤
 and x ∈ �. (5.20)

Since νk ↓ 0 and xk J→ x̄ , we can select K ∈ IN so that νk ≤
 and xk ∈ � for all
k ≥ K , k ∈ J . This ensures together with (5.20) that

∥∥∥gk − ∇ f (xk)

∥∥∥ =
∥∥∥G(xk,min {δk+1, νk}) − ∇ f (xk)

∥∥∥ ≤ Cνk for all k ≥ K , k ∈ J .

Employing gk J→ 0 and νk ↓ 0 as above, we deduce that ∇ f (xk)
J→ 0, and hence

∇ f (x̄) = 0. Therefore, x̄ is a stationary point of f , which justifies (i).
Now we verify (ii) and (iii) simultaneously. It follows from (5.13) and τk ≤ 1 for

all k ∈ IN by the choice of τk in Step 3 of Algorithm 3 that

∞∑

k=1

∥∥∥xk+1 − xk
∥∥∥
2 =

∞∑

k=1

τ 2k

∥∥∥gk
∥∥∥
2 ≤ τ̄

∞∑

k=1

τk

∥∥∥gk
∥∥∥
2

< ∞,

which implies that
∥∥xk+1 − xk

∥∥ → 0. Then both assertions (ii) and (iii) follow from
Lemma 2.3. ��

123

P. D. Khanh et al.

The next result establishes the global convergence with convergence rates of the
iterates

{
xk
}
in Algorithm 3 under the KL property and the boundedness of

{
xk
}
. We

have already discussed the KL property in Remark 2.5. The boundedness of
{

xk
}
is

also a standard assumption that appears in many works on gradient descent methods;
see, e.g., [4, Theorem 4.1], [36, Theorem 1], and [46, Assumption 7].

Theorem 5.5 Let
{

xk
}

be the sequence of iterates generated by Algorithm 3. Assuming
that ∇ f (xk) �= 0 for all k ∈ IN and that

{
xk
}

is bounded yields the assertions:
(i) If x̄ is an accumulation point of

{
xk
}

and f satisfies the KL property at x̄ , then
xk → x̄ as k → ∞.

(ii) If in addition to (i), the KL property at x̄ is satisfied with ψ(t) = Mtq for some
M > 0, q ∈ [1/2, 1), then the following convergence rates are guaranteed:
• If q = 1/2, then the sequence

{
xk
}

converges linearly to x̄ .
• If q ∈ (1/2, 1), then we have the estimate

∥∥∥xk − x̄
∥∥∥ = O(k− 1−q

2q−1
)
.

Proof Let� := {
xk
}
, and let
 > 0. SinceG is a local approximation of∇ f satisfying

condition (3.2), there exists a positive number C such that

‖G(x, δ) − ∇ f (x)‖ ≤ Cδ whenever x ∈ � and 0 < δ ≤
. (5.21)

Select K ∈ IN so that νk <
 for all k ≥ K , which implies by (5.21) and the choice
of gk in Step 1 of Algorithm 3 the relationships

∥∥∥gk − ∇ f (xk)

∥∥∥ =
∥∥∥G(xk,min {δk+1, νk}) − ∇ f (xk)

∥∥∥

≤ C min {δk+1, νk} ≤ Cδk+1 for all k ≥ K . (5.22)

We split the proof of the result into two parts by showing first that the sequences
{Ck} and

{
tmin
k

}
are constant after a finite number of iterations and verifying then the

convergence of
{

xk
}
in (i) with the rates in (ii) by using Propositions 2.6 and 2.7.

Claim 3 There exists k0 ∈ IN such that Ck = Ck0 and tmin
k = tmin

k0
for all k ≥ k0.

Arguing by contradiction, suppose that such a number k0 does not exist. By the con-
struction of {Ck} and

{
tmin
k

}
in Step 3 of Algorithm 3, we deduce that Ck ↑ ∞ and

tmin
k ↓ 0 as k → ∞. Since � is bounded, Lemma 5.2 allows us to find t̄ ∈ (0, 1) for
which

f (x − tg) ≤ f (x) − βt ‖g‖2 whenever x ∈ �, ‖g − ∇ f (x)‖ ≤ 1

2
‖g‖ ,

and t ∈ (0, t̄]. (5.23)

Using the aforementioned properties of {Ck} and {tmin
k }, we get N ≥ K such that

Ck > C and tmin
k < γ t̄ for all k ≥ N . Fix such a number k and then combine the

123

Globally convergent derivative-free…

condition
∥∥gk

∥∥ > μCkδk+1 from (5.1) with Ck > C , μ > 2, and (5.22). This gives
us the inequalities

∥∥∥gk
∥∥∥ > μCkδk+1 ≥ μCδk+1 ≥ 2

∥∥∥gk − ∇ f (xk)

∥∥∥ ,

which imply together with xk ∈ � and (5.23) the estimate

f (xk − tgk) ≤ f (xk) − βt
∥∥∥gk

∥∥∥
2
for all t ∈ (0, t̄]

and thus tell us that tk > γ t̄ > tmin
k . Employing Step 3 of Algorithm 3 yields tmin

k+1 =
tmin
k . Since the latter holds whenever k ≥ N , we conclude that the equality tmin

k = tmin
N

is satisfied for all k ≥ N . This contradicts the condition tmin
k ↓ 0 as k → ∞ and hence

justifies the claimed assertion.

Claim 4 All the assertions in (i) and (ii) are fulfilled.

From Step 2 and Step 3 of Algorithm 3, we deduce that

f (xk) − f (xk+1) ≥ βτk

∥∥∥gk
∥∥∥
2

for all k ∈ IN. (5.24)

Defining N := max {K , k0} with k0 taken from Claim 3 gives us the equalities

Ck = CN and tmin
k = tmin

N whenever k ≥ N . (5.25)

Combining Ck = CN with (5.22) and
∥∥gk

∥∥ > μCkδk+1 from (5.1) ensures that

∥∥∥∇ f (xk)

∥∥∥ ≤
∥∥∥gk

∥∥∥+ Cδk+1

≤
∥∥∥gk

∥∥∥+ C

μCN

∥∥∥gk
∥∥∥ = α

∥∥∥gk
∥∥∥ for all k ≥ N , (5.26)

where α := 1+ C
μCN

. In addition, we have tmin
k+1 = tmin

k = tmin
N in (5.25), which implies

together with Step 3 of Algorithm 3 the relationships

τk = tk ≥ tmin
k = tmin

N as k ≥ N (5.27)

confirming the boundedness of {τk} from below. If the KL property of f holds at the
accumulation point x̄ of

{
xk
}
, it follows from Remark 2.8(i), (5.24), (5.26), and (5.27)

that assumptions (H1) and (H2) in Proposition 2.6 hold. Thus xk → x̄ as k → ∞,
which verifies (i).

Assume finally that the KL property at x̄ is satisfied with ψ(t) = Mtq , M > 0,
and q ∈ [1/2, 1). The iterative procedure xk+1 = xk − τk gk in Step 4 of Algorithm 3
together with (5.27) and gk > 0 from Step 1 therein tells us that xk+1 �= xk for
k ≥ N . Combining this with (5.24), (5.26), and (5.27) verifies all the assumptions of
Proposition 2.7 and therefore completes the proof of the theorem. ��

123

P. D. Khanh et al.

5.2 Dynamic step linesearch for noisy functions

In this subsection, we continue the study of problem (1.1) with the objective function
f : IRn → IR of class C1,1. Similarly to Subsection 4.3, assume that only a noisy
approximation φ(x) = f (x) + ξ(x) of f is available, where ξ : IRn → IR is a noise
function bounded by some known constant ξ f > 0. Unlike Subsection 4.3, which
considersC1,1L functionswith an unknownnoise level,we assumehere that ξ f is known,
whichmay at first seem impractical or inefficient. However, if the noise is generated by
independent and identically distributed randomvariables, we can employ an additional
minor step to approximate the noise locally and use this approximation as a global
noise level. This implementation will be discussed more carefully in the numerical
experiments in Subsection 6.2. Considering only the forward finite difference given
by

G̃(x, δ) = 1

δ

n∑

i=1

(
φ(x + δei) − φ(x)

)
ei for any (x, δ) ∈ IRn × (0,∞), (5.28)

we state the following noisy version of Proposition 3.4 that can be verified similarly.

Proposition 5.6 Let f : IRn → IR be a C1-smooth function such that ∇ f is Lipschitz
continuous on B(x,
) with constant � > 0. Then the noisy forward finite difference
(5.28) satisfies the error bound

∥∥G̃(x, δ) − ∇ f (x)
∥∥ ≤ �

√
nδ

2
+ 2

√
nξ f

δ
for all δ ∈ (0,
]. (5.29)

Now we design Derivative-Free Method with Dynamic Step Linesearch (DFD),
which main feature is a dynamic step linesearch for determining both the stepsize and
the finite difference interval.

Algorithm 4 (DFD for noisy functions).

Step 0 (initialization). Select an initial point x1 ∈ IRn , η > 1, and L1 > 0. Set
k := 1.

Step 1 (dynamic step linesearch). Find ik ∈ Z with the smallest absolute value such

that for gk := G̃
(

xk,

√
4ξ f

ηik Lk

)
and τk = 1

ηik Lk
, it holds that

φ
(

xk − τk gk
)

≤ φ(xk) − τk

9

∥∥∥gk
∥∥∥
2
. (5.30)

Step 2 (stepsize and parameters update). Set xk+1 := xk −τk gk and Lk+1 := ηik Lk .

Remark 5.7 (Discussions on dynamic step linesearch)

123

Globally convergent derivative-free…

Fig. 1 Graph of f (x, y) = (e2x+3y−1 + e3x−y + ex−y−6 − 3)2

• In Step 1 of Algorithm 4, we employ dynamic step linesearch to find an approx-
imation Lk+1 := ηik Lk for the Lipschitz constant �k of ∇ f locally around the
current iterate xk . Then we use Lk+1 to determine both the stepsize τk = 1

Lk+1

and the finite difference interval
√

4ξ f
Lk+1

, which is the minimizer of the right-hand
side of (5.29) with respect to δ when � = Lk+1. This idea also appeared in [20]
for regularized Newton methods, where the finite difference interval is adaptively
adjusted and used for determining the cubic regularization parameter.

• The attempt of using dynamic step linesearch in order to adjust the stepsize is not
new as it has been already employed in [24, 60] for gradient descent methods with
the exact gradient and in [7, 8] for derivative-free optimization methods. However,
employing this procedure to determine both stepsize and finite difference interval
is suggested, to the best of our knowledge, in the present paper for the first time.

• The dynamic step linesearch procedure plays an important role not only in our con-
vergence analysis but also in practical modeling. Theoretically, condition (5.30)
is necessary for the value ηik Lk in Step 1 being a good approximation of the
Lipschitz constant �k of ∇ f locally around the reference iterate xk , which is
confirmed by Proposition 5.9. Numerically, by automatically approximating the
local Lipschitz constant of the gradient, our DFD has a better performance in
comparison with other finite-difference-based algorithms for noisy C1,1 func-
tions with complex structures. To illustrate this claim, we consider the function
f (x, y) := (e2x+3y−1 + e3x−y + ex−y−6 − 3)2 of two variables with the graph in
IR3 depicted below.
This function is inspired by a univariate function in [63, Section 4.1.2]. It pro-
vides a challenging example for finite-difference-based methods in both cases of
approximate gradients and finding minimizers. This is because f has very small
first- and second-order derivatives at points belonging to most of the second and
third parts of the plane. In addition, minimizing the function is more challenging
in the context of derivative-free optimization because the approximate gradient

123

P. D. Khanh et al.

Table 1 Stepsize and finite difference interval selections

Method IMFIL RG GDD (Ada) L-BFGS (Ada) DF-backtracking DFD

Stepsize Backtracking GS Dynamic Armijo + Wolfe Backtracking Dynamic

FD interval Decreasing GS Adaptive Adaptive Backtracking Dynamic

obtained from finite differences may be unreliable, as the function values change
rapidly between flat and sharp regions. As in the context of noisy DFO, we manu-
ally inject into f uniformly distributed stochastic noises with different levels. The
plots below show the trajectories of iterates generated by our DFD (Algorithm 4)
and the following algorithms:

– IMFIL: The implicit filtering algorithm [26, Algorithm 2.2] with the forward
finite difference.

– RG: The random gradient-free method [52, Section 5].
– L-BGFS (Ada): The noise-tolerant quasi-Newton algorithm [64, Algo-
rithm 2.1], where the gradient is approximated by the forward finite difference
with the adaptive finite difference interval estimation from [63, Algorithm 2.1].

– GDD (Ada): Gradient descent with dynamic step linesearch, where the gra-
dient is approximated by the forward finite difference with the adaptive finite
difference interval estimation from [63, Algorithm 2.1].

– DF-backtracking: A modified version of our basic DFD, where the dynamic
step linesearch is replaced by the standard backtracking linesearch, i.e., the
condition i ∈ Z is replaced by i ∈ IN in Step 1 of Algorithm 4.

In the algorithms above, only ourDFDmethod (Algorithm4) uses the dynamic step
linesearch to determine both stepsize and finite difference interval. The selections
of stepsize and finite difference interval for each method are listed in Table 1,
where GS in the selections of RG means grid search. Details for the settings of
the algorithms and additional numerical results on this experiment can be found
in Appendix A, where different noise levels are addressed.
It can be observed from Figure 2 addressing the noise level 0.01 that only the
last points (red stars) generated by our DFD method successfully identify the
minimum region (depicted in dark blue) regardless of the choice of initial points
(blue circles). L-BFGS (Ada) locates theminimum region in the only casewhen the
initial point is (−4,−4). Other algorithms including RG, IMFIL, GDD (Ada), and
DF-backtracking perform even worse since they remain stuck at the initial points
in all the scenarios. Additional graphs in Appendix A also show that these results
are stable with respect to different levels of noise ranging from 1 or 10−3. The
failure of GDD (Ada) and DF-backtracking emphasizes the crucial role of using
dynamic step linesearch to determine both the stepsize and the finite difference
interval in the construction of DFD.

The rest of this subsection is devoted to deriving the fundamental convergence prop-
erties of Algorithm 4 for noisy smooth functions. We begin with a simple albeit useful
lemma about the optimal local Lipschitz constant of the gradient of a C1,1 function.

123

Globally convergent derivative-free…

Fig. 2 Finite-difference-based methods on minimizing a C1,1 function with complex structure

Lemma 5.8 Let � ⊂ IRn be a nonempty bounded set. Then for any ξ > 0, there exists
some � > 0 such that � is the Lipschitz constant of ∇ f on

⋃
x∈� B(x, δx), where

δx := max

{
3

2�
‖∇ f (x)‖ ,

√
4ξ

�

}

.

Proof Define the number M := sup
{ ‖∇ f (x)‖ ∣∣ x ∈ �

} ∈ IR and deduce
from the assumed C1,1 property of f that f is Lipschitz continuous on the set⋃

x∈� B(x,max
{ 3
2 M, 2

√
ξ
}
) with some Lipschitz constant L > 0. Denoting � :=

max {1, L}, we get

δx = max

{
3

2�
‖∇ f (x)‖ ,

√
4ξ

�

}

≤ max

{
3

2
M, 2

√
ξ

}
for all x ∈ �.

This tells us that ∇ f is Lipschitz continuous with the constant � on
⋃

x∈� B(x, δx) as
claimed. ��

The next result plays a crucial technical role in deriving the convergence properties
in what follows.

Proposition 5.9 Let � > 0 and x ∈ IRn be such that ∇ f is Lipschitz continuous with

some constant � > 0 on B
(
x,max

{ 3
2� ‖∇ f (x)‖ ,

√
4ξ f
�

})
, and let �̃ > 0, i ∈ Z, η >

1 be selected so that � ∈ (ηi−1�̃, ηi �̃]. Define g ∈ IRn and τ > 0 by

g := G̃
(

x,

√
4ξ f

ηi �̃

)

and τ := 1

ηi �̃
,

where G̃ is taken from (5.28). If ‖∇ f (x)‖ ≥ 8
√

�ηnξ f , then we have the estimates

123

P. D. Khanh et al.

(i) f (x − τg) ≤ f (x) − 3τ
32 ‖∇ f (x)‖2,

(ii) φ(x − τg) ≤ φ(x) − τ
9 ‖g‖2 .

Proof Since � is the Lipschitz constant of ∇ f on B

(
x,

√
4ξ f
�

)
, we deduce from

Proposition 5.28 that

∥∥G̃(x, δ) − ∇ f (x)
∥∥ ≤ �

√
nδ

2
+ 2

√
nξ f

δ
for all δ ∈

(

0,

√
4ξ f

�

]

. (5.31)

Combining this with g = G̃
(

x,

√
4ξ f

ηi L

)
and � ≤ ηi L tells us that

‖g − ∇ f (x)‖ ≤ �
√

n

2

√
4ξ f

ηi L
+ 2

√
nξ f

√
ηi �̃

4ξ f

≤ ηi �̃
√

n

2

√
4ξ f

ηi L
+ 2

√
nξ f

√
ηi L

4ξ f
= 2

√
ηi �̃nξ f .

Using the triangle inequality and ηi−1�̃ < � yields

‖g‖ ≥ ‖∇ f (x)‖ − ‖g − ∇ f (x)‖
≥ 8

√
η�nξ f − 2

√
ηi �̃nξ f

> 6
√

ηi �̃nξ f ≥ 3 ‖g − ∇ f (x)‖ ,

(5.32)

which being combined with the Cauchy-Schwarz inequality ensures that

〈∇ f (x), g〉 = 〈∇ f (x) − g, g〉 + ‖g‖2

≥ −‖∇ f (x) − g‖ ‖g‖ + ‖g‖2 ≥ 2

3
‖g‖2 .

Thus we arrive at ‖g‖ ≤ 3
2 ‖∇ f (x)‖ implying together with τ = 1

ηi L
≤ 1

�
that

x − τg ∈ B

(
x,

3

2ηi L
‖∇ f (x)‖

)
⊂ B

(
x,

3

2�
‖∇ f (x)‖

)
.

By the Lipschitz continuity of ∇ f with constant � on the ball above and Lemma 2.1,
we get

f (x − τg) ≤ f (x) + 〈x − τg − x,∇ f (x)〉 + �
2 ‖x − τg − x‖2

= f (x) − τ 〈g,∇ f (x)〉 + �τ 2

2 ‖g‖2
≤ f (x) − 2τ

3 ‖g‖2 + τ
2 ‖g‖2 = f (x) − τ

6 ‖g‖2 .

(5.33)

123

Globally convergent derivative-free…

It also follows from (5.32) that

‖g‖ ≥ ‖∇ f (x)‖ − ‖g − ∇ f (x)‖ ≥ ‖∇ f (x)‖ − 1

3
‖g‖ ,

which yields ‖∇ f (x)‖ ≤ 4
3 ‖g‖ and, being combined with (5.33), verifies (i).

(ii) Using (5.33) and the construction of the noisy approximation φ gives us the
estimate

φ(x − τg) ≤ φ(x) − τ

6
‖g‖2 + 2ξ f , (5.34)

which implies together with ηi−1�̃ < �, n ≥ 1, and ‖∇ f (x)‖ ≥ 8
√

�ηnξ f that

τ

18
‖g‖2 ≥ 1

18ηi �̃

9

16
‖∇ f (x)‖2 ≥ 2

64ηi �̃
64η�nξ f ≥ 2ξ f .

Combining the latter with (5.34) leads us to the conclusion in (ii) and thus completes
the proof. ��

Similarly to Subsection 4.3, we say that Step 1 of Algorithm 4 is successful if
the integer number ik is found, and unsuccessful otherwise. It follows directly from
Proposition 5.9 that Step 1 of Algorithm 4 is successful whenever

∥∥∇ f (xk)
∥∥ is not

near 0 as stated below.

Corollary 5.10 At the kth iteration of Algorithm 4, let �k be such that ∇ f is Lipschitz

continuous on B
(
xk,max

{ 3
2�k

∥∥∇ f (xk)
∥∥ ,

√
4ξ f
�k

})
with some constant �k > 0. If the

condition
∥∥∥∇ f (xk)

∥∥∥ ≥ 8
√

�kηnξ f (5.35)

is satisfied, then Step 1 of Algorithm 4 is successful.

Remark 5.11 The result above is one of the crucial findings that illustrate behavior of
Algorithm 4. It shows that as long as ∇ f (xk) is not small relative to the noise and
the local Lipschitz constant of ∇ f around xk , the algorithm always makes significant
progress. This also explains the success ofDFD in the experiment presented inFigure 2.
In the flat regions where the gradient magnitude is small, the local Lipschitz constant
of the gradient is small as well, which ensures that condition (5.35) remains valid.
Consequently, the iterative sequence attempts to move out of such regions.

Employing the obtained corollary, we arrive at the next proposition, which is useful
in the proof of the main convergence results below.

Proposition 5.12 At some kth iteration of Algorithm 4, let L > 0 be such that ∇ f

is Lipschitz continuous with constant L on B
(
xk,max

{ 3
2L

∥∥∇ f (xk)
∥∥ ,

√
4ξ f
L

})
and

assume that
∥∥∥∇ f (xk)

∥∥∥ ≥ 8
√

Lηnξ f .

123

P. D. Khanh et al.

The following assertions hold:

(i) If Lk < ηL then Lk+1 < ηL.
(ii) If Lk ≥ L then Lk+1 ≥ L.
(iii) If Lk ∈ [L, ηL) then Lk+1 = Lk.

Proof (i) By the construction of {Lk}, we find m ∈ Z such that Lk+1 = ηm Lk . If
m ≤ 0, then Lk+1 ≤ Lk < ηL , and so we assume that m > 0. Then the exit condition
in Step 1 of Algorithm 4 yields

φ
(

xk − 1

ηi Lk
gk

i

)
> φ(xk) − 1

ηi Lk

∥∥∥gk
i

∥∥∥
2
for all i ∈ {0, . . . , m − 1} , (5.36)

where gk
i := G̃(xk,

√
4ε f

ηi Lk

)
. Observe that condition (5.35) holds for �k = L , which is a

Lipschitz constant of ∇ f on B

(
xk,max{ 3

2L

∥∥∇ f (xk)
∥∥ ,

√
4ξ f
L

})
by the assumptions

made. Combining this with Corollary 5.10 and estimate (5.36), we deduce that ηi Lk /∈
[L, ηL) for all i ∈ {0, . . . , m − 1}. This fact together with Lk < ηL tells us that
Lk+1 = ηm Lk < ηL .

(ii) By the construction of {Lk}, we find some m ∈ Z such that Lk+1 = ηm Lk . If
m ≥ 0, then Lk+1 ≥ Lk ≥ L , and so we assume that m < 0. Then the exit condition
in Step 1 of Algorithm 4 yields

φ
(

xk − 1

ηi Lk
gk

i

)
> φ(xk) − 1

ηi Lk

∥∥∥gk
i

∥∥∥
2

for all i ∈ {0,−1, . . . , m + 1} ,

(5.37)

where gk
i := G̃(xk,

√
4ε f

ηi Lk

)
. Observe that condition (5.35) holds for �k = L , which

is also a Lipschitz constant of ∇ f on B
(
xk,max

{ 3
2L

∥∥∇ f (xk)
∥∥ ,

√
4ξ f
L

})
by the

assumptions made. Combining this with Corollary 5.10 and (5.37), we get that
ηi Lk /∈ [L, ηL) for all i ∈ {0,−1, . . . , m + 1}. This fact together with Lk ≥ L
verifies that Lk+1 = ηm Lk ≥ L . ��

Now we in a position to derive convergence properties of DFD from Algorithm 4.
Consider first the case where at some K th iteration, Step 1 of Algorithm 4 is not
successful, i.e., we cannot find iK ∈ Z that ensures the descent condition (5.30).
Then Corollary 5.10 tells us that

∥∥∇ f (x K)
∥∥ < 8

√
�K ηnξ f , where �K is a Lipschitz

constant of ∇ f around x K . In this case, Algorithm 4 finds a point near a stationary
one after a finite number of iteration. In practice, to avoid the process of finding ik in
Step 1 of Algorithm 4 from running infinitely to cause a computational error, the users
can add a lower bound sufficiently small and an upper bound sufficiently large for ik

in the loop.

The main theorem of this section concerns the case where Step 1 of Algorithm 4 is
successful for all k ∈ IN. In this scenario, we can find a point near a stationary one,
along the sequence of iterates generated by the algorithm, if just one of the Lipschitz
approximations is appropriate.

123

Globally convergent derivative-free…

Theorem 5.13 Assume that Step 1 of Algorithm 4 is successful for all k ∈ IN and
that there exists L > 0 such that ∇ f is Lipschitz continuous with constant L on
⋃∞

k=1 B
(
xk,max

{ 3
2L

∥∥∇ f (xk)
∥∥ ,

√
4ξ f
L

})
. If infk∈IN f (xk) > −∞ and for some K ∈

IN we have L K ∈ [L, ηL), then the following assertions hold:

(i) There exists N ∈ IN for which

∥∥∥∇ f (x N)

∥∥∥ < 8
√

Lηnξ f . (5.38)

(ii) Assume in addition that f has a global minimizer with the minimum value f ∗,
that f (x K) > f ∗, and that f satisfies the Polyak-Łojasiewicz inequality with
some constant μ > 0, i.e.,

μ(f (x) − f ∗) ≤ 1

2
‖∇ f (x)‖2 for all x ∈ IRn . (5.39)

Then the number N from (5.38) admits the upper estimate

N ≤ max
{
1 + K , 1 + K + log1− 3μ

16ηL

(32ηnξ f

f (x K) − f ∗
)}

. (5.40)

Proof (i) Assume on the contrary that
∥∥∇ f (xk)

∥∥ ≥ 8
√

Lηnξ f as k ∈ IN. It follows
from Proposition 5.12 and L K ∈ [L, ηL) that Lk+1 = Lk whenever k ≥ K . Using
Proposition 5.9(i) with

� := L, x := xk, �̃ := Lk, and i := 0,

we get the relationship below between two subsequent iterations

f (xk+1) ≤ f (xk) − 3

32L K
‖∇ f (xk)‖ whenever k ≥ K ,

which tells us that
{

f (xk)
}
is a strictly decreasing sequence. By infk∈IN f (xk) > −∞,

this sequence is convergent, and hence ∇ f (xk) → 0 as k → ∞. We arrive at a
contradiction with

∥∥∇ f (xk)
∥∥ ≥ 8

√
Lηnξ f for all k ∈ IN, and thus justify (5.38) in

(i).

To verify now assertion (ii), let N be the first iteration for which (5.38) holds, i.e.,

∥∥∥∇ f (xk)

∥∥∥ ≥ 8
√

Lηnξ f for k ∈ {1, . . . , N − 1} .

If N ≤ K + 1, estimate (5.40) is obviously satisfied, and thus we suppose that
N > K + 1. It follows from Proposition 5.12 that Lk = L K ∈ [L, ηL) for all
k ∈ {K , . . . , N − 1}. Fixing such a number k and employing Proposition 5.9(i) for

� := L, x := xk, �̃ := Lk, and i := 0

123

P. D. Khanh et al.

clearly bring us to the estimates

f (xk+1) ≤ f (xk) − 3

32L K

∥∥∥∇ f (xk)

∥∥∥
2 ≤ f (xk) − 3

32ηL

∥∥∥∇ f (xk)

∥∥∥
2
.

Combining this with the Polyak-Łojasiewicz inequality from (5.39), we obtain the
condition

f (xk+1) ≤ f (xk) − 3μ

16ηL
(f (xk) − f ∗),

which can be equivalently rewritten as

f (xk+1) − f ∗ ≤
(
1 − 3μ

16ηL

)(
f (xk) − f ∗).

Using the latter condition for k = K , K + 1, . . . , N − 2 gives us

f (x N−1) − f ∗ ≤
(
1 − 3μ

16ηL

)N−1−K (
f (x K) − f ∗). (5.41)

Since ∇ f is Lipschitz continuous on B
(
x N−1, 1

L ∇ f (x N−1)
)
with constant L ,

Lemma 2.1 yields

f ∗ ≤ f
(

x N−1 − 1

L
∇ f (x N−1)

)

≤ f (x N−1) +
〈
x N−1 − 1

L
∇ f (x N−1) − x N−1,∇ f (x N−1)

〉

+ L

2

∥∥∥∥x N−1 − 1

L
∇ f (x N−1) − x N−1

∥∥∥∥

2

= f (x N−1) − 1

L

∥∥∥∇ f (x N−1)

∥∥∥
2 + 1

2L

∥∥∥∇ f (x N−1)

∥∥∥
2
,

which ensures in turn the fulfillment of

f (x N−1) − f ∗ ≥ 1

2L

∥∥∥∇ f (x N−1)

∥∥∥
2 ≥ 1

2L
64Lηnξ f = 32ηnξ f .

Combining the obtained estimates with (5.41) tells us that

32ηnξ f ≤
(
1 − 3μ

16ηL

)N−1−K
(f (x K) − f ∗),

and thus verifies the claimed conclusion (5.40). ��

123

Globally convergent derivative-free…

Fig. 3 {Lk } generated by DFD approximates local Lipschitz constant of ∇ f around iterates

Remark 5.14

• The existence of the constant L in the assumptions of Theorem 5.13 is guaranteed
under the fulfillment of either one of the following conditions:

– The objective function f is of class C1,1L .
– The level set

{
x | f (x) ≤ f (x1) + 2ξ f

}
is bounded. Indeed, it follows from

(5.30) that the sets

{
xk
}

⊂
{

x ∈ IRn
∣∣ φ(x) ≤ φ(x1)

}
⊂
{

x ∈ IRn
∣∣ f (x) ≤ f (x1) + 2ξ f

}

are bounded as well. Combining the latter observation with Proposition 5.8 for
� := {

xk
}
verifies the existence of the Lipschitz constant L .

• The assumption on the existence of L K ∈ [L, ηL) in Theorem 5.13 ismotivated by
the construction Step 1 of Algorithm 4 and by our analysis conducted in Proposi-
tion 5.9, which shows that Lk being close to the true local Lipschitz constant of∇ f
around xk is related to the success of Step 1. In fact, this phenomenon also appears
in practice as can be seen in Figure 3. The figure illustrates the sequence {Lk}
constructed in Algorithm 4 in comparison with the numerical Lipschitz constant
of ∇ f around xk evaluated by

max
1≤i< j≤100

∥∥∥∇ f (xk
i) − ∇ f (xk

j)

∥∥∥
∥∥∥xk

i − xk
j

∥∥∥
, where xk

i ∈ B

(
xk,

1

10

∥∥∥∇ f (xk)

∥∥∥
)

is chosen uniformly.

The figure also demonstrates that Algorithm 4 automatically approximates the
local Lipschitz constant of ∇ f , which is in fact key to driving good numerical
performance.
However, we believe that rigorously ensuring the assumption Lk ∈ [L, ηL)

requires significantly more efforts including further investigation into the geome-
try of specific problems and the imposition of additional assumptions on the noise.
Therefore, we would defer this analysis to a future research, where this algorithm
is considered solely in more details.

123

P. D. Khanh et al.

6 Numerical experiments

In this section, we present numerical experiments demonstrating the efficiency of our
methods in solving derivative-free optimization problems with and without the pres-
ence of noise. This section is split into two subsections addressing different noise
levels: small noise, which also includes the noiseless case, and large noise. For each
type of the noise level, we compare the performance of our newly developed methods
with various well-known algorithms to ensure the diversity of the numerical experi-
ments. In total, 786 test problems and 10 algorithms are considered in what follows.

6.1 Finite-difference-based algorithms for functions with small noise

Here we compare the performance of our DFC (Algorithm 1) and DFB (Algorithm 3)
methods with other finite-difference-based algorithms to minimize smooth (convex
and nonconvex) functions either without noise, or with small noise. The results in
this subsection suggest that, in addition to the theoretical guarantees, our methods
are more robust than the standard implementations of gradient descent methods with
a constant/backtracking stepsize and with finite difference gradient for a fixed finite
difference interval. The presented results also confirm the practicality of DFC and
DFB methods in comparison with other well-known algorithms as in [26, 52].

6.1.1 Experiments with C1,1
L functions

The first part of the subsection compares the performance of our DFC method using
forward finite differences with some other well-known derivative-free methods for
minimizing C1,1L functions. Since our DFC method is of the gradient descent type, we
choose the set of testing algorithms as follows:

(i) GDC (fixed), i.e., the standard gradient descent with a constant stepsize and
gradients obtained from forward finite differences with a fixed finite difference
interval.

(ii) GD-ada, a variant of DFC with the stepsize being update by the rule in [6,
Algorithm 2.2].

(iii) IMFIL, i.e., the implicit filtering algorithmwith forward finite differences [26].
(iv) RG, i.e., a random gradient-free algorithm for smooth optimization proposed

in [52].

The testing objective functions f are chosen as follows.

1. Least-square (L S) regression: f (x) := ‖Ax − b‖2, where A is an n × n matrix
and b ∈ IRn .

2. A smooth nonconvex (NC) objective: f (x) := ∑n
i=1 log(1 + (Ax − b)2i), where

A is an n × n matrix and b is a vector in IRn . This problem is considered in [59,
Section 5.5] and [42, Section 4] with a nonsmooth term added to the objective
function.

Random datasets are generated with different sizes for the testing purpose. To be more
specific, an n × n matrix A and a vector b ∈ IRn are generated randomly with i.i.d.
(independent and identically distributed) standard Gaussian entries. The dimension n
is chosen from the set {10i, i = 1, . . . , 20}. We consider two types of noise in this

123

Globally convergent derivative-free…

Fig. 4 Illustration for different types of noise

numerical experiment. The first type injects a uniformly distributed random noise with
level ξ f ≥ 0, i.e., ξ(x) ∼ U (−ξ f , ξ f), into the function f and assumes the access
only to φ(x) := f (x) + ξ(x) for all objective functions. In the second approach to
create non-iid noise, let ε be a random array of length 200n constructed as follows:

ε1 ∼ U (−ξ f , ξ f), εk+1 := 0.9εk + 0.1ξk,

where ξk ∼ U (−ξ f , ξ f) for all k ∈ IN. Then for each evaluation at x ∈ IRn , we set
φ(x) := f (x)+ εi , where i is drawn randomly from {1, 2, . . . , 200n}. An illustration
for these two types of noise with the same noise level ξ f = 0.1 is presented below

The noise level is chosen from the set ξ f ∈ {
10i , i = −9, . . . ,−4

}
. The initial

points are chosen as the zero vector for all the tests and algorithms. We also assume
that the noise level is unknown in these numerical experiments. For that reason, the
settings for DFC and GDC (fixed) are chosen as follows:

• DFC, GD-ada: The initial finite difference interval is δ1 = 10−2. Other parameters
are chosen as: L1 = n, μ = 2.5, r = 2, κ = √

n/2, θ = 0.5. The illustration
in Figure 5 shows that L1 and δ1 are just loose lower bounds and loose upper
bounds of the true Lipschitz constant and the optimal finite difference interval,
respectively. This further emphasizes the practicality of the methods.

• GDC (fixed): The finite difference interval is chosen as δ = 10−8 for the noiseless
case and δ = 2

√
ξ f for the noisy case, which is of the same order as the optimal

finite difference interval. Note that the latter selection is for testing purposes only
since GDC (fixed) does not perform well with δ = 10−8 in the presence of noise.
Of course, when the noise level is unknown, choosing a good finite difference
interval for GDC (fixed) is not an easy task. To ensure a fair comparison, the
stepsize of GDC (fixed) is chosen by a grid search on the set

{ 1
n , 0.2

n , 0.1
n

}
, where

n is the dimension of the problem.

The setting of IMFIL is similar to the one given in Appendix A. The setting of RG is
also similar to that in Appendix A, except that the approximate Lipschitz constant is
chosen by a grid search on {n, 5n, 10n} , where n is the dimension of the problem, to
ensure a fair comparison. All the methods are executed until they reach the maximum
number of function evaluations of 200n.

In order to illustrate the performance of the algorithms, we use the performance
profiles [19] with the measure f s

p − f ∗
p , where f s

p is the function value obtained by

123

P. D. Khanh et al.

Fig. 5 Data for objective functions and initializations of DFC, GD-ada

Fig. 6 Performance profiles of methods solving C1,1L problems with uniform i.i.d. noise

Fig. 7 Performance profiles of methods solving C1,1L problems with non-i.i.d. noise

method s for problem p, and where f ∗
p is the optimal value of the problem p. To be

more specific, we assume that the set of problem tests is P . For each method s, we
plot the graph of the function

ρs(τ) := 1

|P|
∣∣∣
{

p ∈ P
∣∣∣

f s
p − f ∗

p

f bestp − f ∗
p

≤ τ
}∣∣∣ for τ ≥ 1,

where |P| is the size of P, andwhere f bestp is the smallest function value obtained by all
the methods in problem p. For example, ρs(1) represents the percentage of problems
where the method s performs the best. Due to the structure of the problems, f ∗

p is
always chosen to be 0. The results for different noise types and levels are presented in
Figures 6 and 7. It can be seen that DFC performs the best in most tests. The robustness
of DFC is also good for most selections of performance ratios and is increasing when
the noise level is increasing.

123

Globally convergent derivative-free…

Table 2 A set of unconstrained problems from CUTEst

Problem n Problem n Problem n Problem n

ALLINITU 4 DIXMAANB 90 HIMMELBG 2 SPARSINE 100

ARWHEAD 100 DQRTIC 10 HIMMELBH 2 TOINTGSS 50

BARD 3 ENGVAL1 50 HUMPS 2 TOINTGSS 100

BDQRTIC 100 ENGVAL1 100 LOGHAIRY 2 TQUARTIC 100

BOX3 3 FLETBV3M 10 NCB20B 100 TRIDIA 100

BOXPOWER 100 FLETBV3M 100 NONDIA 100 VARDIM 10

BRKMCC 2 FLETCBV2 10 NONDQUAR 100 VAREIGVL 50

BROWNAL 100 FLETCBV3 10 PENALTY3 50 VAREIGVL 100

COSINE 10 FLETCBV3 100 POWELLSG 4 WOODS 100

CRAGGLVY 4 FLETCHCR 100 ROSENBRTU 2 ZANGWIL2 2

CURLY30 100 GULF 3 SENSORS 3

DIXMAANB 15 HIMMELBCLS 2 SISSER 2

6.1.2 Experiments with C1,1 Functions

In this subsection, we illustrate the performance of DFBmethod, i.e., Algorithm 3with
forward finite differences on a subset of CUTEst problems [23, 27] with the details
given in Table 2. We also inject uniformly distributed stochastic noise as before, with
the noise level ξ f is either 0, or is chosen from the set

{
10i , i = −9, . . . ,−4

}
while

being unknown to the tested algorithms. In addition to DFB, themethods considered in
this numerical experiment are IMFIL, RGwith the same setting as in Subsection 6.1.1,
andGDB (fixed), i.e., the standard gradient descentmethodwith backtracking stepsize,
where the approximate gradient is obtained from the forward finite difference with a
fixed finite difference interval.

The settings for DFB and GDB (fixed) are chosen as follows:

• DFB: The initial finite difference interval δ1 = 10−2. Other parameters are chosen

as: θ = 0.5, μ = 2.1, η = 2, β = 0.1, γ = 0.5, C1 =
√

n
2 , tmin

1 = 10−6, τ̄ =
1, νk = 1/k.• GDB (fixed): The finite difference interval is chosen as δ = 10−8 for the noiseless
case and δ = 2

√
ξ f for the noisy case, similarly to the selection in GDC (fixed)

in previous numerical experiments. The linesearch reduction factor is 0.5, the
linesearch constant is 0.1, and the lower bound of the linesearch stepsize is 10−10.

All the methods are executed until they reach the maximum number of function evalu-
ations of 200∗n. Similarly to the previous experiments, the results here are illustrated
by the performance profiles with the same measure as in Subsection 6.1.1. Since the
exact optimal value is unknown, we approximate it by running DFB and Powell algo-
rithm from SciPy library [66] with the maximum number of function evaluations of
400∗n on the noiseless function. The performance profiles with different levels are
presented in Figure 8 showing that DFB achieves the best performance for most of the
performance ratios.

123

P. D. Khanh et al.

Fig. 8 Performance profiles of finite-difference-based methods on minimizing C1,1 functions

Fig. 9 Performance profiles of derivative-free methods on C1,1 functions with large, known noise levels

6.2 SciPy production-ready algorithms for functions with large noise

This subsection contains some illustrations of the performance of DFD (Algorithm 4)
on the same subset of CUTEst problems [27] with the details given in Table 2. To
demonstrate the efficiency of DFD in handling large noise, we inject the uniformly
distributed stochastic noise into the tested problems as in the previous experiments
with the high levels of noise ξ f ∈ {

1, 10−1, 10−2, 10−3
}
. In this experiment, the

performance of DFD is compared with efficient production-ready codes from the
well-known SciPy library [66] of Python; namely, L-BFGS-B, Powell, and COBYLA
algorithms. To the best of our knowledge, these methods are among the most popular,
efficient, and state-of-the-art derivative-free methods for smooth functions. Although
the Nelder-Mead method is also presented in the SciPy library, we do not consider it
here due to its poor performance on smooth functions, since it does not take smooth
structures into account in the algorithmic design.

All the algorithms are executed until they reach the maximum number of function
evaluations of 200∗n. The setting of DFD is similar to the one given in Appendix A,
while the settings of L-BFGS-B, Powell, and COBYLA algorithms are chosen to be
standard without any modifications.

The illustration of the results is similar to the one mentioned in Subsection 6.1.2
and is presented in Figure 9.While we found that the Powell and COBYLA algorithms
usually work well for the smallest noise ξ f = 10−3, our DFD method exhibits better
results when the noise is larger, i.e., ξ f ≥ 10−2. For this reason, we illustrate in
Figure 10 below the results for few representative problems in 100-dimensional spaces
with the noise levels 1 and 10−3. Since the L-BFGS-B method does not achieve a
comparable performance with other methods due to the large noise, we do not plot the
results obtained by L-BFGS-B.

Note that the noise level is required for the implementation of DFD, which may not
always be available in practice. However, this issue can be addressed if the noise is
independent and identically distributed since a simple noise estimation procedure can
be further applied. This assumption is also employed in the recent publications [63,
Section 4], [6, Section 5]. In the following examples, we suppose that the noise level

123

Globally convergent derivative-free…

Fig. 10 Comparison of DFD with Powell and COBYLA algorithms from SciPy library. The exact function
values against the function evaluations are presented. The dashed black line shows the noise level ξ f of the
function

Fig. 11 Performance profiles of derivative-free methods on C1,1 functions with large, unknown noise

is unknown for DFD and estimate the local noise level at an arbitrary point x ∈ R
n

but using it as a global noise level. Given a sampling radius
 and a sampling number
m ∈ N, let ui , i = 1, . . . , m, be uniformly sampled in B(x,
) and then define the
computation noise level as

ε f := max
i=1,...,m

⎧
⎨

⎩
f (ui) − 1

m

m∑

j=1

f (u j)

⎫
⎬

⎭
.

In the following experiment, we choose
 = 10−15 and m = 2n, where n is the
dimension of the objective function. The results show that DFD still significantly
outperforms all othermethodswhen the noise is large and has comparable performance
to the Powell method when the noise level is smaller.

6.3 Acceleration techniques for C1,1
L functions

In this section, we present numerical enhancements to Algorithm 2 by incorporating
acceleration techniques. First, we consider the Polyak heavy-ball method, also known
as the Polyakmomentummethod [56], which has beenwell recognized in the literature
on smooth convex and nonconvex optimization. It has been justified to achieve a faster
convergence rate compared to standard gradient descent for minimizing C1,1L strongly
convex functions in [56]. The convergence analysis for nonconvex smooth objective

123

P. D. Khanh et al.

Fig. 12 Performance profiles of DFC-HB and Powell methods on minimizing C1,1L functions with i.i.d.
uniform noise (upper) and non-i.i.d. noise (lower)

functions is also discussed in [68] with further extensions to nonsmooth optimization
methods given in [67]. In what follows, we numerically examine the integration of this
method into DFC via Algorithm 2 for solving convex and nonconvex noisy smooth
problems in the derivative-free setting, while deferring a rigorous theoretical analysis
in this context. To this end, Algorithm 2 is modified in the following way, where "HB"
is the abbreviation of the "heavy ball".

Algorithm 5 (DFC-HB).

Step 0 Select some x1 ∈ IRn, δ1 > 0, L1 > 0, θ ∈ (0, 1), β > 0, and η > 1.

Step 1 (approximate gradient). Find gk and the smallest nonnegative integer ik such
that

gk = G̃(xk, θ ik δk) and
∥∥∥gk

∥∥∥ > 2Lk
√

nθ ik δk . (6.1)

Then set δk+1 := θ ik δk .

Step 2 (update). If φ
(

xk − 1

Lk
gk
)

≤ φ(xk) − 1

24Lk

∥∥gk
∥∥2, then xk+1 := xk +

β(xk −xk+1)− 1

Lk
gk and Lk+1 := Lk .Otherwise, set xk+1 := xk and Lk+1 := ηLk .

Note that DFC-HB is a generalization of DFC with β = 0 reducing it to the
standard DFC without momentum. Using the same experimental settings as those in
Subsections 6.1.1 and 6.2, we present the results for DFC-HB in comparison with the
standard DFC and the Powell method below. The results in Figure 12 show that, while
the standard version of DFC does not perform well compared to the Powell method,
incorporating momentum significantly improves its performance. As a result, DFC
with momentum (β = 0.9 and β = 0.95) outperforms the Powell method in this
numerical experiment across different noise levels and types. Note that the values
β = 0.9 and β = 0.95 are not derived from an extensive grid search, but are standard

123

Globally convergent derivative-free…

momentum selections widely used in machine learning tasks, e.g., [43, Section 5] and
the references therein. The data profiles for the methods are presented in Appendix B.

We now turn our attention to quasi-Newton methods [53, Chapter 6], a very suc-
cessful technique for nonlinear continuous optimization that approximates theHessian
matrix to the navigate curvature of the objective function without much of the com-
putational cost of exact Newton methods. The general framework of quasi-Newton
methods when incorporated with DFC is as follows, where the abbreviation “QN"
stands for quasi-Newton.

Algorithm 6 (DFC-QN).

Step 0. Select some x1 ∈ IRn, δ1 > 0, L1 > 0, θ ∈ (0, 1), and η > 1.

Step 1 (approximate gradient). Find gk and the smallest nonnegative integer ik such
that

gk = G̃(xk, θ ik δk) and
∥∥∥gk

∥∥∥ > 2Lk
√

nθ ik δk . (6.2)

Then set δk+1 := θ ik δk .

Step 2 (update). If φ
(

xk − 1

Lk
gk
)

≤ φ(xk)− 1

24Lk

∥∥gk
∥∥2, then find dk ∈ IRn such

that Hkdk = −gk , where Hk is a Hessian approximation, and tk > 0 such that

tk := max

{
t | f (xt + tdk) ≤ f (xk) − βt

∥∥∥dk
∥∥∥
2 |t = 1, γ, γ 2, . . .

}
,

and set xk+1 := xk + tkdk and Lk+1 := Lk . Otherwise, xk+1 := xk and Lk+1 :=
ηLk .

In this numerical experiment, we consider two most well-known types of quasi-
Newton methods in the literature, which are BFGS (Broyden-Fletcher-Goldfarb-
Shanno) and L-BFGS (limited-memory BFGS). The sequence {Hk}k∈IN using the
BFGS updates can be computed as follows: starting from a positive definite matrix
H1, for each k ∈ IN, we define vectors

sk := xk+1 − xk, yk := gk+1 − gk,

where xk, xk+1, gk, gk+1 are taken from Algorithm 6. Then the updated matrix is
defined as

Hk+1 :=
⎧
⎨

⎩
Hk + yk yT

k〈yk ,sk〉 − Hk sk (Hk sk)T

〈Hk sk ,sk〉 , if
〈
sk, yk

〉
> 0,

Hk, otherwise.

Note that no matrix inversion is needed to compute dk from equation Hkdk = −gk in

practice, since it is possible to construct the sequence
{

H−1
k

}

k∈IN iteratively; see [53,

Equation (6.17)].

123

P. D. Khanh et al.

Fig. 13 Performance profiles of DFC-QN and Powell methods on minimizing C1,1L functions with uniform
i.i.d. noise (upper) and non-i.i.d. noise (lower)

When dealing with a large number of variables, L-BFGS updates are also useful
since they reduce the cost of storing and updating approximations of the Hessian
matrix. This is now considered as probably the most widely used method of this class,
whichwas first introduced in [48]. It is based on theBFGSupdate employed at iteration
k only to the most recent min {m, k} pairs (here m is a parameter, usually chosen from
{3, . . . , 20}) to compute a descent direction.

Using the same settings as in Subsection 6.1.1 and Subsection 6.2, the results of
DFC-BFGS and DFC-L-BFGS, in comparison with the standard DFC and the state-
of-the-art Powell method from the Scipy library, are presented in Figure 13 below.
Similarly to the results above for momentum techniques, DFC while incorporating
with quasi-Newton steps, also outperforms the Powell method in most scenarios. The
data profiles for the methods are presented in Appendix B.

7 Concluding remarks

This paper addresses derivative-free optimization problemswith smooth andnot neces-
sarily convex objectives.Ageneral derivative-free optimizationmethodwith a constant
stepsize (DFC) is proposed to deal with C1,1L problems. This novel method is shown
to achieve the fundamental convergence properties of the standard gradient descent in
the noiseless case and reach a near-stationary point in the noisy case without demand-
ing any noise level information. Constructive estimates of the number of required
iterations and function evaluations are established in the paper .

To deal with C1,1 problems, a general derivative-free optimization method with
backtracking stepsize (DFB) is proposed. The analysis of DFB in the noiseless case
recovers convergence properties of the standard gradient descent method with a
backtracking stepsize. To handle C1,1 problems with large noise, a derivative-free
optimization method with dynamic step linesearch (DFD) is proposed. It is revealed
that DFD offers greater robustness than other finite-difference-based schemes to solve
C1,1 problemswith complex structure. The conducted analysis shows that under certain
conditions, DFD reaches a near-stationary point after a finite number of iterations.

123

Globally convergent derivative-free…

Numerical results demonstrate that DFC and DFB achieve higher efficiency and
robustness in comparison with other well-known finite-difference-based schemes in
solving noiseless problems and problems with small noise. Moreover, DFD provide
favorable results compared to some production-ready codes from SciPy library when
the noise is large.

Our future research includes convergence analysis of the newly developed algo-
rithms coupled with quasi-Newton methods for noisy smooth functions together with
the appropriate accelerations, specifically the ones presented in the numerical exper-
iments in Section 6. Moreover, we intend to establish efficient conditions to ensure
local and global convergence to local minimizers of iterative sequences generated by
derivative-free methods for problems of nonsmooth unconstrained and constrained
optimization. Further practical conditions with rigorous theoretical guarantees to sat-
isfy the requirements of Theorem 4.10 will also be considered in our future research.

Acknowledgements We sincerely thank two anonymous referees for their valuable time to referee the
paper and insightful feedback that allowed us to improve the original presentation. Our gratitude also
goes to Katya Scheinberg for many fruitful discussions and remarks; in particular, for her suggestions on
acceleration techniques, which helped us to significantly enhance the quality and practicality of our paper.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

A Numerical results on bivariate functions

In this appendix, we present additional results for the experiment conducted in
Remark 5.7. The setup for the experiment is the following:

• DFD: The parameters are chosen as η = 2, L1 = 1.
• IMFIL: The setting of IMFIL in this experiment follows the original development
at [26, Page 279], with ᾱ = 10−10;β = 0.1; γ = 0.5 and hk = 21−k .

• RG: The parameters of RG in this experiment also obey the equations (55) and

(58) in the original paper [52], i.e., h = 1
4(n+4)L and μ = 5

3(n+4)

√
ε
2L . Since the

function in question does not have a globally Lipschitz continuous gradient, we
tune the Lipschitz constant L by grid search on the set {0.1, 1, 10} and choose the
best one corresponding to the smallest function value at the last iterate.

• DF-backtracking: The parameters are chosen as η = 2 and L1 = 1 similarly to
DFD.

• GDD (Ada): The code for the adaptive finite difference interval estimation is given
in [63, Algorithm 2.1]. The parameters for dynamic step linesearch are similar to
DFD.

• L-BFGS (Ada): The L-BFGS code 1 is provided is taken from [64], while the code
for the adaptive finite difference interval estimation is provided by [63, Algo-
rithm 2.1].

1 https://github.com/hjmshi/noise-tolerant-bfgs

123

https://github.com/hjmshi/noise-tolerant-bfgs

P. D. Khanh et al.

Fig. 14 Finite-difference-based methods on minimizing a bivariate C1,1 function (noise level 1)

Fig. 15 Finite-difference-based methods on minimizing a bivariate C1,1 function (noise level 10−1)

All the algorithms are executed for 200 function evaluations with the three different
initial points (−4, 0), (−4,−4), (−6, 0). We also choose the noise levels from the set
{1, 0.1, 0.01, 0.001}. Since the result with a noise level of 0.01 is already presented in
Remark 5.7, we do not represent it here. In addition, while conducting the experiments,
due to the randomness of the noisy objective function, there are some cases where the
iterative sequence generated by the RG method explodes to extremely large numbers
(around 1026) and does not find the minimum region properly. For this reason, we
exclusively plot points generated by the methods within a ball centered at the origin
with the radius 20. It can be seen that our DFD is stable with respect to different levels
of noise, and fails only in one over nine cases when the noise is 0.1 and the initial
point is (−4, 0) (Figures 14, 15, 16).

123

Globally convergent derivative-free…

Fig. 16 Finite-difference-based methods on minimizing a bivariate C1,1 function (noise level 10−3)

Fig. 17 Data Profiles of DFC-HB and Powell methods on minimizing C1,1L functions with uniform i.i.d.
noise

123

P. D. Khanh et al.

Fig. 18 Data Profiles of DFC-HB and Powell methods on minimizing C1,1L functions with non-i.i.d. noise

B Data profiles for methods in section 6.3

In this appendix, we present comparisons between the methods in Section 6.3 using
data profiles [50], where a solver s is said to solve a problem p with accuracy τ if it
reaches a point x∗

s such that

f p(x1s) − f p(x∗
s) ≥ (1 − τ)

(
f p(x1s) − f ∗

p

)
,

where f p is the objective function of problem p, x1s is the initial point, and f ∗
p is

the smallest function value obtained by all solvers for problem p. The “number of
simplex gradients” for each solver is defined as the number of (n + 1)-bundles of
gradients used. The algorithm settings are similar to those in Section 6.3, except that
the maximum number of function evaluations is set to 200(n + 1) instead of 200n.
The results also demonstrate that the acceleration techniques significantly improve the
performance of the DFC method and, in most cases, outperform the state-of-the-art
Powell method from the SciPy library in terms of computational budget (Figures 17,
18, 19, 20).

123

Globally convergent derivative-free…

Fig. 19 Data Profiles of DFC-QN and Powell methods on minimizing C1,1L functions with uniform i.i.d.
noise

123

P. D. Khanh et al.

Fig. 20 Data Profiles of DFC-QN and Powell methods on minimizing C1,1L functions with non-i.i.d. noise

References

1. Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic
cost functions. SIAM J. Optim. 16, 531–547 (2005)

2. Addis, A., Cassioli, A., Locatelli, M., Schoen, F.: A global optimization method for the design of space
trajectories. Comput. Optim. Appl. 48, 635–652 (2011)

3. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection
methods for nonconvex problems. An approach based on the Kurdyka-Łojasiewicz property. Math.
Oper. Res. 35, 438–457 (2010)

4. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame
problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods.
Math. Program. 137, 91–129 (2013)

5. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer, Cham, Switzerland (2017)
6. Berahas, A.S., Byrd, R.H., Nocedal, J.: Derivative-free optimization of noisy functions via quasi-

Newton methods. SIAM J. Optim. 29, 965–993 (2019)
7. Berahas, A.S., Cao, L., Choromanski, K., Scheinberg, K.: A theoretical and empirical comparison of

gradient approximations in derivative-free optimization. Found. Comput. Math. 22, 507–560 (2022)
8. Berahas, A.S., Cao, L., Scheinberg, K.: Global convergence rate analysis of a generic linesearch

algorithm with noise. SIAM J. Optim. 31, 1489–1518 (2021)
9. Bertsekas, D.P.: Nonlinear Programming, 3rd edn. Athena Scientific, Belmont, MA (2016)

10. Bertsekas, D.P., Tsitsiklis, J.N.: Gradient convergence in gradient methods with errors. SIAM J. Optim.
10, 627–642 (2000)

11. Bolte, J., Pauwels, E.: Conservative set-valued fields, automatic differentiation, stochastic gradient
methods and deep learning. Math. Program. 188, 19–51 (2021)

12. Bellavia, S., Gurioli, G., Morini, B., Toint, P.L.: Adaptive regularization algorithms with inexact eval-
uations for nonconvex optimization. SIAM J. Optim. 29, 2881–2915 (2019)

13. Cartis, C., Gould, N.I.M., Toint, P.: On the oracle complexity of first-order and derivative-free algo-
rithms for smooth nonconvex minimization. SIAM J. Optim. 22, 66–86 (2012)

123

Globally convergent derivative-free…

14. Cartis, C., Scheinberg, K.: Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models. Math. Program. 169, 337–375 (2018)

15. Cartis, C., Gould, N.I.M., Toint, P.L.: Evaluation Complexity of Algorithms for Nonconvex Optimiza-
tion: Theory. Computation and Perspectives, SIAM, Philadelphia, PA (2022)

16. Choi, T.D., Kelley, C.T.: Superlinear convergence and implicit filtering. SIAMJ.Optim. 10, 1149–1162
(2000)

17. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. SIAM,
Philadelphia, PA (2009)

18. Conn, A.R., Scheinberg, K., Vicente, L.N.: Global convergence of general derivative-free trust-region
algorithms to first- and second-order critical points. SIAM J. Optim. 20, 387–415 (2009)

19. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.
91, 201–213 (2022)

20. Doikov, N., Grapiglia, G. N.: First and zeroth-order implementations of the regularizedNewtonmethod
with lazy approximated Hessians, https://doi.org/10.48550/arXiv.2309.02412

21. Duchi, J.C., Jordan, M.I., Wainwright, M.J., Wibisono, A.: Optimal rates for zero-order convex opti-
mization: The power of two function evaluations. IEEE Trans. Inf. Theory 61, 2788–2806 (2015)

22. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems,
vol. II. Springer, New York (2003)

23. Fowkes, J., Roberts, L., Burmen, A.: PyCUTEst: An open source Python package of optimization test
problems. J. Open Source Softw. 7, 4377 (2022)

24. Fridovich-Keil, S., Recht, B.: Choosing the stepsize: Intuitive linesearch algorithms with efficient
convergence, The 11th Workshop on Optimization for Machine Learning (2019)

25. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Computing forward-difference intervals for
numerical optimization. SIAM J. Sci. Comput. 4, 310–321 (1983)

26. Gilmore, P., Kelley, C.T.: An implicit filtering algorithm for optimization of functions with many local
minima. SIAM J. Optim. 5, 269–285 (1995)

27. Gould, N.I., Orban, D., Toint, P.L.: CUTEst: A constrained and unconstrained testing environment
with safe threads for mathematical optimization. Comput. Optim. Appl. 60, 545–557 (2015)

28. Gasnikov, A., Dvinskikh, D., Dvurechensky, P., Gorbunov, E., Beznosikov, A., Lobanov, A.: Random-
ized gradient-free methods in convex optimization, arXiv preprint arXiv:2211.13566, (2022)

29. Gorbunov, E., Dvurechensky, P., Gasnikov, A.: An accelerated method for derivative-free smooth
stochastic convex optimization. SIAM J. Optim. 32, 1210–1238 (2022)

30. Grapiglia,G.N.:Worst-case evaluation complexity of a derivative-free quadratic regularizationmethod.
Optim. Lett. 18, 195–213 (2024)

31. Gray, G.A., Kolda, T.G.: Algorithm 856: Appspack 4.0: Asynchronous parallel pattern search for
derivative-free optimization. ACM Trans. Math. Softw. 32, 485–507 (2006)

32. Hare, W., Lucet, Y.: Derivative-free optimization via proximal point methods. J. Optim. Theory Appl.
160, 204–220 (2014)

33. Hare, W., Nutini, J.: A derivative-free approximate gradient sampling algorithm for finite minimax
problems. Comput. Optim. Appl. 56, 1–38 (2013)

34. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. ACM 8,
212–229 (1961)

35. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems.
Springer, New York (2014)

36. Josz, C.: Global convergence of the gradient method for functions definable in o-minimal structures.
Math. Program. 202, 355–383 (2023)

37. Josz, C., Lai, L., Li, X.: Convergence of the momentum method for semi-algebraic functions with
locally Lipschitz gradients. SIAM J. Optim. 33, 2988–3011 (2023)

38. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia, PA (1999)
39. Kelley, C. T.: Implicit Filtering and Nonlinear Least Squares Problems, The International Federation

for Information Processing, 71–90 (2003)
40. Khanh, P.D., Mordukhovich, B.S., Tran, D.B.: Inexact reduced gradient methods in smooth nonconvex

optimization. J. Optim. Theory Appl. 203, 2138–2178 (2024)
41. Khanh, P.D.,Mordukhovich, B.S., Tran,D.B.:A new inexact gradient descentmethodwith applications

to nonsmooth convex optimization. Optim.Methods Softw. (2024). https://doi.org/10.1080/10556788.
2024.2322700

123

https://doi.org/10.48550/arXiv.2309.02412
http://arxiv.org/abs/2211.13566
https://doi.org/10.1080/10556788.2024.2322700
https://doi.org/10.1080/10556788.2024.2322700

P. D. Khanh et al.

42. Khanh, P.D., Mordukhovich, B.S., Phat, V.T., Tran, D.B.: Inexact proximal methods for weakly convex
functions. J. Glob. Optim. 91, 611–646 (2025)

43. Khanh, P.D., Luong, H.-C., Mordukhovich, B.S., Tran, D.B.: Fundamental convergence analysis of
sharpness-aware minimization. Adv. Neural Inf. Process. Syst. (2024)

44. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48, 769–
783 (1998)

45. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead
simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

46. Lee, J.D., Panageas, I., Piliouras, G., Simchowitz, M., Jordan, M.I., Recht, B.: First-order methods
almost always avoid strict saddle points. Math. Program. 176, 311–337 (2019)

47. Łojasiewicz, S.: Ensembles Semi-Analytiques. Institut des Hautes Etudes Scientifiques, Bures-sur-
Yvette, France (1965)

48. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math.
Program. 45, 503–528 (1989)

49. Moré, J.J., Wild, S.M.: Estimating derivatives of noisy simulations. ACMTrans. Math. Softw. 38, 1–21
(2012)

50. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20,
172–191 (2009)

51. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)
52. Nesterov, Y., Spokoiny, V.: Random gradient-free minimization of convex functions. Found. Comput.

Math. 17, 527–566 (2017)
53. Nocedal, J., Wright, S. J.: Numerical Optimization, 2nd edition. New York, (2006)
54. Ostrowski, A.: Solution of Equations and Systems of Equations, 2nd edn. Academic Press, New York

(1966)
55. Polyak, B.T.: Gradient methods for the minimization of functionals. USSRComput.Math.Math. Phys.

3, 864–878 (1963)
56. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput.

Math. Math. Phys. 3, 1–17 (1964)
57. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without

calculating derivatives. Comput. J. 7, 155–162 (1964)
58. Powell,M. J. D.: A direct search optimizationmethod thatmodels the objective and constraint functions

by linear interpolation, in Advances in Optimization and Numerical Analysis, pp. 51–67, Springer,
New York, (1994)

59. Themelis, A., Stella, L., Patrinos, P.: Forward–backward quasi-Newton methods for nonsmooth opti-
mization problems. Comput. Optim. Appl. 67, 443–487 (2017)

60. Truong, T.T., Nguyen, H.-T.: Backtracking gradient descent method and some applications in large
scale optimisation. Part 2: Algorithms and experiments. Appl. Math. Optim. 84, 2557–2586 (2021)

61. Scheinberg, K.: Finite difference gradient approximation: To randomize or not? INFORMS J. Comput.
34, 2384–2388 (2022)

62. Shibaev, I., Dvurechensky, P., Gasnikov, A.: Zeroth-ordermethods for noisyHölder-gradient functions.
Optim. Lett. 16, 2123–2143 (2022)

63. Shi, H.M., Xie, Y., Xuan, M.Q., Nocedal, J.: Adaptive finite-difference interval estimation for noisy
derivative-free optimization. SIAM J. Sci. Comput. 44, 2302–2321 (2022)

64. Shi, H.M., Xie, Y., Byrd, R., Nocedal, J.: A noise-tolerant quasi-Newton algorithm for unconstrained
optimization. SIAM J. Optim. 32, 29–55 (2022)

65. Shi, H.M., Xuan, M.Q., Oztoprak, F., Nocedal, J.: On the numerical performance of finite-difference-
based methods for derivative-free optimization. Optim. Methods Softw. 38, 289–311 (2023)

66. Virtanen, P., Gommers, R., Oliphant, T.E., et al.: SciPy 1.0: Fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020)

67. Wen, B., Chen, X., Pong, T.K.: Linear convergence of proximal gradient algorithm with extrapolation
for a class of nonconvex nonsmooth minimization problems. SIAM J. Optim. 27, 124–145 (2017)

68. Zavriev, S., Kostyuk, F.: Heavy-ball method in nonconvex optimization problems. Comput. Math.
Model. 4, 336–341 (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Globally convergent derivative-free…

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Globally convergent derivative-free methods in nonconvex optimization with and without noise
	Abstract
	1 Introduction
	2 Preliminaries
	3 Global and local approximations of gradients
	4 General derivative-free methods for Lg
	4.1 Algorithm Construction
	4.2 Analysis for noiseless functions
	4.3 Analysis for noisy functions

	5 General derivative-free methods for functions
	5.1 Backtracking linesearch for noiseless functions
	5.2 Dynamic step linesearch for noisy functions

	6 Numerical experiments
	6.1 Finite-difference-based algorithms for functions with small noise
	6.1.1 Experiments with Lg functions
	6.1.2 Experiments with Lg Functions

	6.2 SciPy production-ready algorithms for functions with large noise
	6.3 Acceleration techniques for Lg functions

	7 Concluding remarks
	Acknowledgements
	A Numerical results on bivariate functions
	B Data profiles for methods in section 6.3
	References

